【題目】如圖1,點(diǎn)A、B、P分別在兩坐標(biāo)軸上,∠APB=60°,PB=m,PA=2m,以點(diǎn)P為圓心、PB為半徑作⊙P,作∠OBP的平分線分別交⊙P、OP于C、D,連接AC.
(1)求證:直線AB是⊙P的切線.
(2)設(shè)△ACD的面積為S,求S關(guān)于m的函數(shù)關(guān)系式.
(3)如圖2,當(dāng)m=2時(shí),把點(diǎn)C向右平移一個(gè)單位得到點(diǎn)T,過O、T兩點(diǎn)作⊙Q交x軸、y軸于E、F兩點(diǎn),若M、N分別為兩弧的中點(diǎn),作MG⊥EF,NH⊥EF,垂足為G、H,試求MG+NH的值.
【答案】見解析
【解析】分析: (1)根據(jù)切線的判定定理證得∠ABP=90°后即可判定切線;
(2)連接PC,根據(jù)∠APB=90°-∠OBP=∠OBA,∠OBC=∠PBC,得到∠ADB=∠PBC+∠PBC=∠ABD,從而得到∠CPA=∠POB=90°,利用三角形的面積公式得到S=m2;
(3)作TJ⊥x軸,TK⊥y軸,連接ET、FT,得到△ETJ≌△FTK,從而得到NH=NR=OF和MG=OE,最后求得MG+NH=(OE+OF)=×4=2.
詳解:
(1)∵∠POB=90°,∠APB=60°,
∴PB=m,
∴PO=PB=m,OB=m,
又∵PA=2m,
∴OA=m,
在RT△OAB中,AB=m
∴PA2+AB2=PA2
∴∠ABP=90°,
∵PB是⊙P的半徑,
∴直線AB是⊙P的切線.
(2)連接PC,
∵∠APB=90°-∠OBP=∠OBA,∠OBC=∠PBC,
∴∠ADB=∠PBC+∠PBC=∠ABD
∴AD=AB=m,
又∵PB=PC=m,
∴PC∥OC
∴∠CPA=∠POB=90°,
∴S△ACD=AD×CP= m×m=m2;
(3)作TG⊥x軸,TK⊥y軸,連接ET、FT,
當(dāng)m=2時(shí),PO=m,由(2)知∠CPA=90°,
∴C點(diǎn)為 (1,-2),
∴T為(2,-2,)TG=TK=2,
∴點(diǎn)T在∠EOF的平分線上,∴
∴TE=TF,
∴△ETG≌△FTK,
∴EF=EG,
∴OE+OF=OG-EG+OK+FK=OG+OK=4
延長NH交⊙Q于R,連接QN,QR,∵∠EOF=90°,
∴EF為⊙Q的直徑,∴
∴NR=OF
∴NH=NR=OF
同理MG=OE
∴MG+NH=(OE+OF)=×4=2
點(diǎn)睛: 本題考查了圓的綜合知識(shí),難度較大,一般為中考題的壓軸題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知梯形ABCD中,AB∥CD,∠D=90°,BE平分∠ABC,交CD于點(diǎn)E,F(xiàn)是AB的中點(diǎn),聯(lián)結(jié)AE、EF,且AE⊥BE.
求證:(1)四邊形BCEF是菱形;
(2).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小聰從家里跑步去體育場,在那里鍛煉了一會(huì)兒后,又走到文具店去買筆,然后走回家,如圖是小聰離家的距離(單位:)與時(shí)間(單位:)的圖象。根據(jù)圖象回答下列問題:
(1)體育場離小聰家______;
(2)小聰在體育場鍛煉了______;
(3)小聰從體育場走到文具店的平均速度是______;
(4)小聰在返回時(shí),何時(shí)離家的距離是?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,規(guī)定:拋物線y=a(xh) +k的關(guān)聯(lián)直線為y=a(xh)+k.
例如:拋物線y=2(x+1) 3的關(guān)聯(lián)直線為y=2(x+1)3,即y=2x1.
(1)如圖,對(duì)于拋物線y=(x1) +3.
①該拋物線的頂點(diǎn)坐標(biāo)為___,關(guān)聯(lián)直線為___,該拋物線與其關(guān)聯(lián)直線的交點(diǎn)坐標(biāo)為___和___;
②點(diǎn)P是拋物線y=(x1) +3上一點(diǎn),過點(diǎn)P的直線PQ垂直于x軸,交拋物線y=(x1) +3的關(guān)聯(lián)直線于點(diǎn)Q.設(shè)點(diǎn)P的橫坐標(biāo)為m,線段PQ的長度為d(d>0),求當(dāng)d隨m的增大而減小時(shí),d與m之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍。
(2)頂點(diǎn)在第一象限的拋物線y=a(x1) +4a與其關(guān)聯(lián)直線交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),與x軸負(fù)半軸交于點(diǎn)C,直線AB與x軸交于點(diǎn)D,連結(jié)AC、BC.
①求△BCD的面積(用含a的代數(shù)式表示).
②當(dāng)△ABC為鈍角三角形時(shí),直接寫出a的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:c=10,且a,b滿足(a+26)2+|b+c|=0,請(qǐng)回答問題:
(1)請(qǐng)直接寫出a,b,c的值:a= ,b= ;
(2)在數(shù)軸上a、b、c所對(duì)應(yīng)的點(diǎn)分別為A、B、C,記A、B兩點(diǎn)間的距離為AB,則AB= ,AC= ;
(3)在(1)(2)的條件下,若點(diǎn)M從點(diǎn)A出發(fā),以每秒1個(gè)單位長度的速度向右運(yùn)動(dòng),當(dāng)點(diǎn)M到達(dá)點(diǎn)C時(shí),點(diǎn)M停止;當(dāng)點(diǎn)M運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)N從點(diǎn)A出發(fā),以每秒3個(gè)單位長度向右運(yùn)動(dòng),點(diǎn)N到達(dá)點(diǎn)C后,再立即以同樣的速度返回,當(dāng)點(diǎn)N到達(dá)點(diǎn)A時(shí),點(diǎn)N停止.從點(diǎn)M開始運(yùn)動(dòng)時(shí)起,至點(diǎn)M、N均停止運(yùn)動(dòng)為止,設(shè)時(shí)間為t秒,請(qǐng)用含t的代數(shù)式表示M,N兩點(diǎn)間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017浙江省湖州市,第23題,10分)湖州素有魚米之鄉(xiāng)之稱,某水產(chǎn)養(yǎng)殖大戶為了更好地發(fā)揮技術(shù)優(yōu)勢,一次性收購了20000kg淡水魚,計(jì)劃養(yǎng)殖一段時(shí)間后再出售.已知每天放養(yǎng)的費(fèi)用相同,放養(yǎng)10天的總成本為30.4萬元;放養(yǎng)20天的總成本為30.8萬元(總成本=放養(yǎng)總費(fèi)用+收購成本).
(1)設(shè)每天的放養(yǎng)費(fèi)用是a萬元,收購成本為b萬元,求a和b的值;
(2)設(shè)這批淡水魚放養(yǎng)t天后的質(zhì)量為m(kg),銷售單價(jià)為y元/kg.根據(jù)以往經(jīng)驗(yàn)可知:m與t的函數(shù)關(guān)系為;y與t的函數(shù)關(guān)系如圖所示.
①分別求出當(dāng)0≤t≤50和50<t≤100時(shí),y與t的函數(shù)關(guān)系式;
②設(shè)將這批淡水魚放養(yǎng)t天后一次性出售所得利潤為W元,求當(dāng)t為何值時(shí),W最大?并求出最大值.(利潤=銷售總額﹣總成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象如圖,則下列結(jié)論中正確的有( )
①a+b+c>0;②a-b+c<0;③b>0;④b=2a;⑤abc<0.
A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)
【答案】B
【解析】試題解析:當(dāng)x=1時(shí),y=a+b+c,頂點(diǎn)坐標(biāo)(1,a+b+c),
由圖象可知,頂點(diǎn)坐標(biāo)在第一象限,
∴a+b+c>0,故①正確;
當(dāng)x=-1時(shí),y=a-b+c,
由圖象可知,當(dāng)x=-1時(shí),所對(duì)應(yīng)的點(diǎn)在第四象限,
∴y=a-b+c<0,故②正確;
∵圖象開口向下,
∴a<0,
∵x=- =1,
∴b=-2a,故④錯(cuò)誤;
∴b>0,故③正確;
∵圖象與y軸的交點(diǎn)在y軸的上半軸,
∴c>0,
∴abc<0,故⑤正確;
∴正確的有4個(gè).
故選B.
【題型】單選題
【結(jié)束】
10
【題目】如圖,在△ABC中,∠B=∠C=36°,AB的垂直平分線交BC于點(diǎn)D,交AB于點(diǎn)H,AC的垂直平分線交BC于點(diǎn)E,交AC于點(diǎn)G,連接AD,AE,則下列結(jié)論錯(cuò)誤的是( )
A. B. AD,AE將∠BAC三等分
C. △ABE≌△ACD D. S△ADH=S△CEG
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,折疊長方形的一邊AD,使點(diǎn)D落在BC邊上的點(diǎn)F處,BC=15,AB=9.
求:(1)FC的長;(2)EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生的課余生活情況,某中學(xué)在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查. 問卷中請(qǐng)學(xué)生選擇最喜歡的課余生活種類(每人只選一類),選項(xiàng)有音樂類、美術(shù)類、體育類及其他共四類,調(diào)查后將數(shù)據(jù)繪制成扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖(如圖所示).
(1)體育所占的百分比是_______,選擇其他的人數(shù)是________
(2)在問卷調(diào)查中,小丁和小李分別選擇了音樂類和美術(shù)類,校學(xué)生會(huì)要從選擇音樂類和美術(shù)類的學(xué)生中分別抽取一名學(xué)生參加活動(dòng),用列表或畫樹狀圖的方法求小丁和小李恰好都被選中的概率;
(3)如果該學(xué)校有500名學(xué)生,請(qǐng)你估計(jì)該學(xué)校中最喜歡體育運(yùn)動(dòng)的學(xué)生約有多少名?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com