【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B分別在x,y的正半軸上,以AB所在的直線為對(duì)稱軸將翻折,使點(diǎn)O落在點(diǎn)C處,若點(diǎn)C的坐標(biāo)為(4,8),則 的外接圓半徑為_____________ .

【答案】

【解析】

連接OC,過(guò)點(diǎn)CCDy軸于點(diǎn)D,得:CD=4OD=8,OC=,由∠BOE+AOE=90°,∠OAE+AOE=90°,得:∠BOE=OAE,即:tanOAE=tanBOE=,得:OA=OE=×=10,作OA的垂直平分線,交OA于點(diǎn)M,交AB于點(diǎn)N,求出AN的值,即可得到答案.

連接OC,過(guò)點(diǎn)CCDy軸于點(diǎn)D,

∵點(diǎn)C的坐標(biāo)為(4,8),

CD=4,OD=8,OC=,

AOBACB關(guān)于直線AB軸對(duì)稱,

OCAB,OE=CE=

∵∠BOE+AOE=90°,∠OAE+AOE=90°,

∴∠BOE=OAE,

tanOAE=tanBOE=,

OEAEOA=12,

OA=OE=×=10,

OA的垂直平分線,交OA于點(diǎn)M,交AB于點(diǎn)N,

AB垂直平分OC,

∴點(diǎn)N 的外接圓的圓心,AN是半徑,

tanOAE=,

AN=AM×=×OA×=××10×=.

故答案是:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在不透明的袋中有大小、形狀和質(zhì)地等完全相同的4個(gè)小球,它們分別標(biāo)有數(shù)字﹣1、﹣2、1、2.從袋中任意摸出一小球(不放回),將袋中的小球攪勻后,再?gòu)拇忻隽硪恍∏颍?/span>

1)請(qǐng)你用列表或畫(huà)樹(shù)狀圖的方法表示摸出小球上的數(shù)字可能出現(xiàn)的所有結(jié)果;

2)將第一次摸出的數(shù)字作為點(diǎn)的橫坐標(biāo)x,第二次摸出的數(shù)字作為點(diǎn)的縱坐標(biāo)y,求點(diǎn)(xy)落在雙曲線y上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿分10分)在某市組織的大型商業(yè)演出活動(dòng)中,對(duì)團(tuán)體購(gòu)買(mǎi)門(mén)票實(shí)行優(yōu)惠,決定在原定票價(jià)基礎(chǔ)上每張降價(jià)80元,這樣按原定票價(jià)需花費(fèi)6000元購(gòu)買(mǎi)的門(mén)票張數(shù),現(xiàn)在只花費(fèi)了4800元.

1)求每張門(mén)票原定的票價(jià);

2)根據(jù)實(shí)際情況,活動(dòng)組織單位決定對(duì)于個(gè)人購(gòu)票也采取優(yōu)惠措施,原定票價(jià)經(jīng)過(guò)連續(xù)二次降價(jià)后降為324元,求平均每次降價(jià)的百分率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點(diǎn)D在⊙O上,∠DAB45°,BCAD,CDAB

1)判斷直線CD與⊙O的位置關(guān)系,并說(shuō)明理由;

2)若⊙O的半徑為1,求圖中陰影部分的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于一個(gè)函數(shù),自變量時(shí),函數(shù)值也等于,則稱是這個(gè)函數(shù)的不動(dòng)點(diǎn).

已知二次函數(shù).

1)若3是此函數(shù)的不動(dòng)點(diǎn),則的值為__________.

2)若此函數(shù)有兩個(gè)相異的不動(dòng)點(diǎn),,且,則的取值范圍為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,線段AB經(jīng)過(guò)⊙O的圓心,交⊙OA,C兩點(diǎn),⊙O的弦,連接BD, ,連接DO并延長(zhǎng)交⊙O于點(diǎn)E,連接BE⊙O 于點(diǎn)M .

(1)求證:直線BD⊙O的切線;

(2)求切線BD的長(zhǎng);

(3)求線段BM的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(操作發(fā)現(xiàn))

如圖①,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上.

1)請(qǐng)按要求畫(huà)圖:將ABC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)90°,點(diǎn)B的對(duì)應(yīng)點(diǎn)為B′,點(diǎn)C的對(duì)應(yīng)點(diǎn)為C′,連接BB′

2)在(1)所畫(huà)圖形中,∠AB′B=____

(問(wèn)題解決)

3)如圖②,在等邊三角形ABC中,AC=7,點(diǎn)PABC內(nèi),且∠APC=90°,∠BPC=120°,求APC的面積.

小明同學(xué)通過(guò)觀察、分析、思考,對(duì)上述問(wèn)題形成了如下想法:

想法一:將APC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)60°,得到AP′B,連接PP′,尋找PA,PBPC三條線段之間的數(shù)量關(guān)系;

想法二:將APB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)60°,得到AP′C′,連接PP′,尋找PA,PB,PC三條線段之間的數(shù)量關(guān)系.

請(qǐng)參考小明同學(xué)的想法,完成該問(wèn)題的解答過(guò)程.(一種方法即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C90°,∠B30°,以A為圓心,任意長(zhǎng)為半徑畫(huà)弧分別交AB、AC于點(diǎn)MN,再分別以M、N為圓心,大于MN的長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)P,連接AP,并廷長(zhǎng)交BC于點(diǎn)D,則下列說(shuō)法中正確的個(gè)數(shù)是( 。

AD是∠BAC的平分線

ADC60°

點(diǎn)DAB的垂直平分線上

AD2dm,則點(diǎn)DAB的距離是1dm

SDACSDAB12

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為2,點(diǎn)P和點(diǎn)Q分別從點(diǎn)B和點(diǎn)C出發(fā),沿射線BC向右運(yùn)動(dòng),且速度相同,過(guò)點(diǎn)QQHBD,垂足為H,連接PH,設(shè)點(diǎn)P運(yùn)動(dòng)的距離為x0x≤2),BPH的面積為S,則能反映Sx之間的函數(shù)關(guān)系的圖象大致為( 。

A.B.

C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案