如圖,在△ABC中,∠BAC=90°,AB=9,AC=12,AD⊥BC,垂足為D.
(1)求BC的長;(2)求BD的長.
(1)15(2)
【解析】
試題分析:(1)由已知在△ABC中,∠BAC=90°,所以得到△ABC為直角三角形且AB、AC為兩直角邊,因此根據(jù)勾股定理可求出BC的長.(2)AD⊥BC,垂足為D,所以得到直角三角形DBA,∠BDA和∠BAC都為直角,∠B為公共角,得到△ABC與△DBA相似,根據(jù)相似三角形的性質(zhì)求得BDA.
【解析】
(1)在△ABC中,∵∠BAC=90°,
∴BC2=AB2+AC2(勾股定理),
=92+122,
=81+144,
=225.
∴BC=15.
(2)AD⊥BC,垂足為D,
∴△DBA為直角三角形,
在△ABC與△DBA中,
∠BDA=∠BAC=90°,∠B=∠B(公共角),
∴△ABC∽△DBA,
∴=,
∴BD===.
科目:初中數(shù)學(xué) 來源:2015年課時同步練習(xí)(浙教版)八年級上3.1認(rèn)識不等式2(解析版) 題型:填空題
若不等式(a+4)x<5的解集是x>﹣1,則a的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2015年課時同步練習(xí)(浙教版)八年級上2.8直角三角形全等的判定(解析版) 題型:解答題
如圖,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,且DB=DC,求證:EB=FC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2015年課時同步練習(xí)(浙教版)八年級上2.8直角三角形全等的判定(解析版) 題型:選擇題
如圖,要用“HL”判定Rt△ABC和Rt△A′B′C′全等的條件是( )
A.AC=A′C′,BC=B′C′ B.∠A=∠A′,AB=A′B′
C.AC=A′C′,AB=A′B′ D.∠B=∠B′,BC=B′C′
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2015年課時同步練習(xí)(浙教版)八年級上2.8直角三角形全等的判定(解析版) 題型:選擇題
下列條件不可以判定兩個直角三角形全等的是( )
A.兩條直角邊對應(yīng)相等 B.有兩條邊對應(yīng)相等
C.一條邊和一銳角對應(yīng)相等 D.一條邊和一個角對應(yīng)相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2015年課時同步練習(xí)(浙教版)八年級上2.7探索勾股定理(解析版) 題型:填空題
如圖,在Rt△ABC中,∠A=90°,AB=AC=4,點D為AC的中點,點E在邊BC上,且ED⊥BD,則△CDE的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2015年課時同步練習(xí)(浙教版)八年級上2.7探索勾股定理(解析版) 題型:填空題
如圖,是5×5的正方形網(wǎng)絡(luò),方格紙中△ABC的3個頂點分別在小正方形的頂點(格點)上,這樣的三角形叫格點三角形,如果以點D、E為兩個頂點作位置不同的格點三角形,使所作的格點三角形與△ABC全等,那么,這樣的格點三角形最多可以畫出 個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2015年課時同步練習(xí)(浙教版)八年級上2.4等腰三角形的判定定理2(解析版) 題型:解答題
已知:如圖,在△ABC中,CD⊥AB垂足為D,BE⊥AC垂足為E,連接DE,點G、F分別是BC、DE的中點.
求證:GF⊥DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2015年課時同步練習(xí)(浙教版)八年級上2.4等腰三角形的判定定理1(解析版) 題型:?????
在等邊△ABC所在平面內(nèi)找出一個點,使它與三角形中的任意兩個頂點所組成的三角形都是等腰三角形.這樣的點一共有( )
A.1個 B.4個 C.7個 D.10個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com