【題目】在正方形ABCD中,對角線AC與BD交于點O;在Rt△PMN中,∠MPN=90°.
(1)如圖1,若點P與點O重合且PM⊥AD、PN⊥AB,分別交AD、AB于點E、F,請直接寫出PE與PF的數(shù)量關(guān)系;
(2)將圖1中的Rt△PMN繞點O順時針旋轉(zhuǎn)角度α(0°<α<45°).
①如圖2,在旋轉(zhuǎn)過程中(1)中的結(jié)論依然成立嗎?若成立,請證明;若不成立,請說明理由;
②如圖2,在旋轉(zhuǎn)過程中,當∠DOM=15°時,連接EF,若正方形的邊長為2,請直接寫出線段EF的長;
③如圖3,旋轉(zhuǎn)后,若Rt△PMN的頂點P在線段OB上移動(不與點O、B重合),當BD=3BP時,猜想此時PE與PF的數(shù)量關(guān)系,并給出證明;當BD=mBP時,請直接寫出PE與PF的數(shù)量關(guān)系.
【答案】
(1)
解: PE=PF,理由:
∵四邊形ABCD為正方形,
∴∠BAC=∠DAC,又PM⊥AD、PN⊥AB,
∴PE=PF;
(2)
解:①成立,理由:
∵AC、BD是正方形ABCD的對角線,
∴OA=OD,∠FAO=∠EDO=45°,∠AOD=90°,
∴∠DOE+∠AOE=90°,
∵∠MPN=90°,
∴∠FOA+∠AOE=90°,
∴∠FOA=∠DOE,
在△FOA和△EOD中,
,
∴△FOA≌△EOD,
∴OE=OF,即PE=PF;
②如圖2,作OG⊥AB于G,
∵∠DOM=15°,
∴∠AOF=15°,則∠FOG=30°,
∵cos∠FOG=,
∴OF==,又OE=OF,
∴EF=;
③PE=2PF,
證明:如圖3,過點P作HP⊥BD交AB于點H,
則△HPB為等腰直角三角形,∠HPD=90°,
∴HP=BP,
∵BD=3BP,
∴PD=2BP,
∴PD=2 HP,
又∵∠HPF+∠HPE=90°,∠DPE+∠HPE=90°,
∴∠HPF=∠DPE,
又∵∠BHP=∠EDP=45°,
∴△PHF∽△PDE,
∴==,
即PE=2PF,
由此規(guī)律可知,當BD=mBP時,PE=(m﹣1)PF.
【解析】(1)根據(jù)正方形的性質(zhì)和角平分線的性質(zhì)解答即可;
(2)①根據(jù)正方形的性質(zhì)和旋轉(zhuǎn)的性質(zhì)證明△FOA≌△EOD,得到答案;
②作OG⊥AB于G,根據(jù)余弦的概念求出OF的長,根據(jù)勾股定理求值即可;
③過點P作HP⊥BD交AB于點H,根據(jù)相似三角形的判定和性質(zhì)求出PE與PF的數(shù)量關(guān)系,根據(jù)解答結(jié)果總結(jié)規(guī)律得到當BD=mBP時,PE與PF的數(shù)量關(guān)系.
【考點精析】解答此題的關(guān)鍵在于理解角平分線的性質(zhì)定理的相關(guān)知識,掌握定理1:在角的平分線上的點到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點,在這個角的平分線上,以及對勾股定理的概念的理解,了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
科目:初中數(shù)學 來源: 題型:
【題目】校文藝部在全校范圍內(nèi)隨機抽取一部分同學,對同學們喜愛的四種“明星真人秀”節(jié)目進行問卷調(diào)查(每位同學只能選擇一種最喜愛的節(jié)目),并將調(diào)查結(jié)果整理后分別繪制成如圖所示的不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖).
請根據(jù)所給信息回答下列問題:
(1)本次問卷調(diào)查共調(diào)查了多少名學生?
(2)請將兩幅統(tǒng)計圖補充完整;
(3)若該校有1500名學生,據(jù)此估計有多少名學生最喜愛《奔跑吧兄弟》節(jié)目.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x+3與x軸交于點C,與y軸交于點B,拋物線y=ax2+x+c經(jīng)過B、C兩點.
(1)求拋物線的解析式;
(2)如圖,點E是直線BC上方拋物線上的一動點,當△BEC面積最大時,請求出點E的坐標和△BEC面積的最大值?
(3)在(2)的結(jié)論下,過點E作y軸的平行線交直線BC于點M,連接AM,點Q是拋物線對稱軸上的動點,在拋物線上是否存在點P,使得以P、Q、A、M為頂點的四邊形是平行四邊形?如果存在,請直接寫出點P的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為矩形,E為BC邊中點,連接AE,以AD為直徑的⊙O交AE于點F,連接CF.
(1)求證:CF與⊙O相切;
(2)若AD=2,F(xiàn)為AE的中點,求AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從甲市到乙市乘坐高速列車的路程為180千米,乘坐普通列車的路程為240千米.高速列車的平均速度是普通列車的平均速度的3倍.高速列車的乘車時間比普通列車的乘車時間縮短了2小時.高速列車的平均速度是每小時多少千米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,∠AOB=90°,AB∥x軸,OB=2,雙曲線y=經(jīng)過點B,將△AOB繞點B逆時針旋轉(zhuǎn),使點O的對應(yīng)點D落在x軸的正半軸上.若AB的對應(yīng)線段CB恰好經(jīng)過點O.
(1)求點B的坐標和雙曲線的解析式;
(2)判斷點C是否在雙曲線上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市為了引導居民合理用水,居民生活用水實行二級階梯水價計量辦法,具體如下:第一階梯,每戶居民月用水量不超過12噸,價格為4元/噸;第二階梯,每戶居民月用水量超過12噸,超過部分的價格為8元/噸.為了了解全市居民月用水量的分布情況,通過抽樣獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照[0,2],(2,4],…,(14,16]分成8組,制成了如圖1所示的頻率分布直方圖.
(Ⅰ)求頻率分布直方圖中字母a的值,并求該組的頻率;
(Ⅱ)通過頻率分布直方圖,估計該市居民每月的用水量的中位數(shù)m的值(保留兩位小數(shù));
(Ⅲ)如圖2是該市居民張某2016年1~6月份的月用水費y(元)與月份x的散點圖,其擬合的線性回歸方程是 =2x+33,若張某2016年1~7月份水費總支出為312元,試估計張某7月份的用水噸數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C1:ρ2﹣4ρcosθ+3=0,θ∈[0,2π],曲線C2:ρ= ,θ∈[0,2π]. (Ⅰ)求曲線C1的一個參數(shù)方程;
(Ⅱ)若曲線C1和曲線C2相交于A、B兩點,求|AB|的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,DE∥BC,且過△ABC的重心,分別與AB,AC交于點D,E,點P是線段DE上一點,CP的延長線交AB于點Q,如果 = ,那么S△DPQ:S△CPE的值是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com