【題目】如圖,點(diǎn)P是∠AOB內(nèi)任意一點(diǎn),∠AOB=30°,OP=8,點(diǎn)M和點(diǎn)N分別是射線OA和射線OB上的動(dòng)點(diǎn),則△PMN周長的最小值為( 。
A. 5B. 6C. 8D. 10
【答案】C
【解析】
設(shè)點(diǎn)P關(guān)于OA的對稱點(diǎn)為C,關(guān)于OB的對稱點(diǎn)為D,當(dāng)點(diǎn)M、N在CD上時(shí),△PMN的周長最。
解:分別作點(diǎn)P關(guān)于OA、OB的對稱點(diǎn)C、D,連接CD,分別交OA、OB于點(diǎn)M、N,連接OP、OC、OD、PM、PN.
∵點(diǎn)P關(guān)于OA的對稱點(diǎn)為C,關(guān)于OB的對稱點(diǎn)為D,
∴PM=CM,OP=OC,∠COA=∠POA;
∵點(diǎn)P關(guān)于OB的對稱點(diǎn)為D,
∴PN=DN,OP=OD,∠DOB=∠POB,
∴OC=OD=OP=8cm,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,
∴△COD是等邊三角形,
∴CD=OC=OD=8.
∴△PMN的周長的最小值=PM+MN+PN=CM+MN+DN≥CD=8,
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示有下列4個(gè)結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④a+b>m(am+b)(m≠1的實(shí)數(shù)),其中正確結(jié)論的個(gè)數(shù)為( 。
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABD和△ACE中,有下列四個(gè)等式:①AB=AC;②AD=AE;③∠1=∠2;④BD=CE.以其中三個(gè)條件為題設(shè),填入已知欄中,一個(gè)論斷為結(jié)論,填入下面求證欄中,使之組成一個(gè)真命題,并寫出證明過程.
已知: .
求證: .
證明:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,等邊△ABC的邊長為8,D為AC上的一個(gè)動(dòng)點(diǎn),延長AB到點(diǎn)E,使BE=CD,連接DE交BC于點(diǎn)P
(1)求證:DP=EP;
(2)若D為AC的中點(diǎn),求BP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,以AB為直徑的⊙O分別交AC、BC于D、E兩點(diǎn),連接ED
(1)求證:△CDE為等腰三角形;
(2)若CD=3,BC=4,求AD的長和⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)、、都在方格紙的格點(diǎn)上,方格紙中每個(gè)小正方形的邊長都是1.
(1)畫關(guān)于直線對稱的;
(2)在直線上找一點(diǎn),使最小;(要求在直線上標(biāo)出點(diǎn)的位置)
(3)連接、,計(jì)算四邊形PABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】類比轉(zhuǎn)化、從特殊到一般等思想方法,在數(shù)學(xué)學(xué)習(xí)和研究中經(jīng)常用到,如下是一個(gè)案例,請補(bǔ)充完整.
(1)嘗試探究
如圖(1),在正方形ABCD中,對角線AC、BD相交于點(diǎn)O,點(diǎn)E是BC邊上一點(diǎn),AE與BD交于點(diǎn)G,過點(diǎn)E作EF⊥AE交AC于點(diǎn)F,若=2,則的值是 ;
(2)拓展遷移
如圖(2),在矩形ABCD中,過點(diǎn)B作BH⊥AC于點(diǎn)O,交AD相于點(diǎn)H,點(diǎn)E是BC邊上一點(diǎn),AE與BH相交于點(diǎn)G,過點(diǎn)E作EF⊥AE交AC于點(diǎn)F.
①若∠BAE=∠ACB,sin∠EAF=,求tan∠ACB;
②若,=b(a>0,b>0),求的值(用含a,b的代數(shù)式表示).
圖(1) 圖(2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,于點(diǎn)于點(diǎn)交于點(diǎn)且平分.
圖中有多少對全等三角形?請一一列舉出來(不必說明理由);
求證:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com