【題目】(探究)(1)如圖①,點(diǎn)E、F、G、H分別在平行四邊形ABCD的邊AB、BC、CDDA上,連結(jié)EF、FGGH、HE,將AEH、BFE、CGF、DHG分別沿EF、FGGH、HE折疊,折疊后的圖形恰好能拼成一個(gè)無(wú)重疊、無(wú)縫隙的矩形.若,求的長(zhǎng).

(拓展)(2)參考圖②,四邊形ABCD是平行四邊形,,當(dāng)按圖①的方式折疊后的圖形能拼成一個(gè)無(wú)重疊、無(wú)縫隙的正方形時(shí),則___________

【答案】1;(2

【解析】

1)根據(jù)題意可證△HGN≌△EFM,可得HN=FM,且AH=HM,可證AD=HF=5,根據(jù)勾股定理可求EH的長(zhǎng).

2)由探究可得AD=HF,BE=EM=AE,∠B=EMF,由EFGH為正方形,可得HF=EF,∠EFH=45°,解△EFM可得EM=EF,則可求的值.

解:(1)如圖1


∵折疊后AB落在點(diǎn)M處,C、D落在點(diǎn)N處.

∵四邊形ABCD是平行四邊形,

∴∠C+D=180°,∠B=D

由折疊可知,

C=FNG,∠D=HNG,∠B=EMF=D=GNHHD=HN,MF=BFAH=MH

H、NF共線(xiàn).

∵折疊后的圖形恰好能拼成一個(gè)無(wú)重疊、無(wú)縫隙的矩形,

H、NM、F共線(xiàn),EF=HG,EFHG,∠FEH=90°.

∴∠NHG=MFE

∴△EFM≌△GHN

MF=BF=HN=HD

AH+HD=MH+MF

AD=FH

AD=5,EF=2,∠FEH=90°

FH=5

由勾股定理得

;

2)如圖2

由探究可得:AD=HFBE=EM=AE,∠B=EMF

∵∠A=120°,ADBC

∴∠B=60°=EMF

EHGF是正方形

EH=EF,∠EFH=45°

FH=EF

EOHF,且∠EFH=45°

EO=FO=EF

∵∠EMF=60°,EOHF,

EO=OM,EM=2MO

OM=EF,EM=EF

BE=AE=EF

AB=EF

.

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線(xiàn)y=+mx+3x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)B的坐標(biāo)為(3,0),

1)求m的值及拋物線(xiàn)的頂點(diǎn)坐標(biāo).

2)點(diǎn)P是拋物線(xiàn)對(duì)稱(chēng)軸l上的一個(gè)動(dòng)點(diǎn),當(dāng)PA+PC的值最小時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩人輪流在黑板上寫(xiě)下不超過(guò) 的正整數(shù)(每次只能寫(xiě)一個(gè)數(shù)),規(guī)定禁止在黑板上寫(xiě)已經(jīng)寫(xiě)過(guò)的數(shù)的約數(shù),最后不能寫(xiě)的為失敗者,如果甲寫(xiě)第一個(gè),那么,甲寫(xiě)數(shù)字時(shí)有必勝的策略.

A. 10 B. 9 C. 8D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD,兩條對(duì)角線(xiàn)相交于O點(diǎn),過(guò)點(diǎn)OAC的垂線(xiàn)EF,分別交AD、BCEF點(diǎn),連結(jié)CE,若OCcm,CD4cm,則DE的長(zhǎng)為(

A.cmB.5cmC.3cmD.2cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,直角梯形ABCD中,ADBC,∠ADC=90°AD=8,BC=6,點(diǎn)M從點(diǎn)D出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)A運(yùn)動(dòng),同時(shí),點(diǎn)N從點(diǎn)B出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)C運(yùn)動(dòng).其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).過(guò)點(diǎn)NNPAD于點(diǎn)P,連接ACNP于點(diǎn)Q,連接MQ.設(shè)運(yùn)動(dòng)時(shí)間為t秒.

1AM= ,AP= .(用含t的代數(shù)式表示)

2)當(dāng)四邊形ANCP為平行四邊形時(shí),求t的值

3)如圖2,將AQM沿AD翻折,得AKM,是否存在某時(shí)刻t,

①使四邊形AQMK為為菱形,若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由

②使四邊形AQMK為正方形,求 AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】體育文化公司為某學(xué)校捐贈(zèng)甲、乙兩種品牌的體育器材,甲品牌有A、B、C三種型號(hào),乙品牌有D、E兩種型號(hào),現(xiàn)要從甲、乙兩種品牌的器材中各選購(gòu)一種型號(hào)進(jìn)行捐贈(zèng).
1)下列事件是不可能事件的是

A.選購(gòu)乙品牌的D型號(hào) B.既選購(gòu)甲品牌也選購(gòu)乙品牌

C.選購(gòu)甲品牌的A型號(hào)和乙品牌的D型號(hào) D.只選購(gòu)甲品牌的A型號(hào)

2)寫(xiě)出所有的選購(gòu)方案(用列表法或樹(shù)狀圖);

3)如果在上述選購(gòu)方案中,每種方案被選中的可能性相同,那么A型器材被選中的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一條公路旁依次有,,三個(gè)村莊,甲乙兩人騎自行車(chē)分別從村、村同時(shí)出發(fā)前往村,甲乙之間的距離與騎行時(shí)間之間的函數(shù)關(guān)系如圖所示,下列結(jié)論:

兩村相距; ②出發(fā)后兩人相遇;

③甲每小時(shí)比乙多騎行; ④相遇后,乙又騎行了時(shí)兩人相距

其中正確的有_____________________.(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,O為原點(diǎn),點(diǎn)A(2,0),點(diǎn)P(1,m)(m0)和點(diǎn)Q關(guān)于x軸對(duì)稱(chēng).過(guò)點(diǎn)PPBx軸,與直線(xiàn)AQ交于點(diǎn)B,如果APBO,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線(xiàn)經(jīng)過(guò)點(diǎn)和點(diǎn)

(1)求拋物線(xiàn)的解析式及頂點(diǎn)的坐標(biāo);

(2)點(diǎn)是拋物線(xiàn)上之間的一點(diǎn),過(guò)點(diǎn)軸于點(diǎn),軸,交拋物線(xiàn)于點(diǎn),過(guò)點(diǎn)軸于點(diǎn),當(dāng)矩形的周長(zhǎng)最大時(shí),求點(diǎn)的橫坐標(biāo);

(3)如圖2,連接、,點(diǎn)在線(xiàn)段(不與、重合),作,交線(xiàn)段于點(diǎn),是否存在這樣點(diǎn),使得為等腰三角形?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案