【題目】如圖,四邊形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分別找一點(diǎn)M、N,使△AMN周長(zhǎng)最小時(shí),則∠AMN+∠ANM的度數(shù)為(

A.130°
B.120°
C.110°
D.100°

【答案】B
【解析】解:作A關(guān)于BC和CD的對(duì)稱點(diǎn)A′,A″,連接A′A″,交BC于M,交CD于N,則A′A″即為△AMN的周長(zhǎng)最小值.作DA延長(zhǎng)線AH,
∵∠DAB=120°,
∴∠HAA′=60°,
∴∠AA′M+∠A″=∠HAA′=60°,
∵∠MA′A=∠MAA′,∠NAD=∠A″,
且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,
∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°,
故選:B.

【考點(diǎn)精析】根據(jù)題目的已知條件,利用軸對(duì)稱-最短路線問(wèn)題的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握已知起點(diǎn)結(jié)點(diǎn),求最短路徑;與確定起點(diǎn)相反,已知終點(diǎn)結(jié)點(diǎn),求最短路徑;已知起點(diǎn)和終點(diǎn),求兩結(jié)點(diǎn)之間的最短路徑;求圖中所有最短路徑.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,(1)如果∠1=__________,那么DEAC;(同位角相等,兩直線平行)

(2)如果∠1=__________,那么EFBC;(內(nèi)錯(cuò)角相等,兩直線平行);

(3)如果DEF+__________=180°,那么DEAC;(同旁內(nèi)角互補(bǔ),兩直線平行);

(4)如果∠2+__________=180°,那么ABDF;(同旁內(nèi)角互補(bǔ),兩直線平行)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一個(gè)多邊形的內(nèi)角和等于它的外角和的兩倍,則這個(gè)多邊形的邊數(shù)為( )
A.6
B.7
C.8
D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】世界上最小的開(kāi)花結(jié)果植物是澳大利亞的出水浮萍,這種植物的果實(shí)像一個(gè)微小的無(wú)花果,質(zhì)量只有0.00 000 0076克,用科學(xué)記數(shù)法表示是( )
A.7.6×108
B.7.6×10-7
C.7.6×10-8
D.7.6×10-9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把一些圖書分給幾名同學(xué),如果每人分3本,那么余8本;如果前面的每名同學(xué)分5本,那么最后一人就分不到3本。這些圖書共有______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,△ABC在平面直角坐標(biāo)系中的位置如圖①所示,A點(diǎn)坐標(biāo)為(﹣4,0),B點(diǎn)坐標(biāo)為(6,0),點(diǎn)D為BC的中點(diǎn),點(diǎn)E為線段AB上一動(dòng)點(diǎn),連接DE經(jīng)過(guò)點(diǎn)A、B、C三點(diǎn)的拋物線的解析式為

(1)求拋物線的解析式;

(2)如圖①,將△ADE以DE為軸翻折,點(diǎn)A的對(duì)稱點(diǎn)為點(diǎn)G,當(dāng)點(diǎn)G恰好落在拋物線的對(duì)稱軸上時(shí),求G點(diǎn)的坐標(biāo);

(3)如圖②,當(dāng)點(diǎn)E在線段AB上運(yùn)動(dòng)時(shí),拋物線的對(duì)稱軸上是否存在點(diǎn)F,使得以C、D、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)E、F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列成語(yǔ)所描述的事件是不可能事件的是( 。

A.日行千里B.守株待兔C.水漲船高D.水中撈月

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知∠α與∠β互余,且∠α=35°,則∠β=______°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商品的進(jìn)價(jià)為每件20元,售價(jià)為每件30元,毎個(gè)月可買出180件:如果每件商品的售價(jià)每上漲1元,則每個(gè)月就會(huì)少賣出10件,但每件售價(jià)不能高于35元,毎件商品的售價(jià)為多少元時(shí),每個(gè)月的銷售利潤(rùn)將達(dá)到1920元?

查看答案和解析>>

同步練習(xí)冊(cè)答案