【題目】已知,矩形ABCD中,AB=4cmBC=8cm,AC的垂直平分線(xiàn)EF分別交AD、BC于點(diǎn)E、F,垂足為O

1)如圖1,連接AF、CE.求證四邊形AFCE為菱形,并求AF的長(zhǎng);

2)如圖2,動(dòng)點(diǎn)PQ分別從A、C兩點(diǎn)同時(shí)出發(fā),沿AFBCDE各邊勻速運(yùn)動(dòng)一周.即點(diǎn)PA→F→B→A停止,點(diǎn)QC→D→E→C停止.在運(yùn)動(dòng)過(guò)程中,

①已知點(diǎn)P的速度為每秒5cm,點(diǎn)Q的速度為每秒4cm,運(yùn)動(dòng)時(shí)間為t秒,當(dāng)A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),求t的值.

②若點(diǎn)P、Q的運(yùn)動(dòng)路程分別為a、b(單位:cm,ab≠0),已知A、CP、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,求ab滿(mǎn)足的數(shù)量關(guān)系式.

【答案】1)證明見(jiàn)解析,AF=5cm

2)①以A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),秒.

ab滿(mǎn)足的數(shù)量關(guān)系式是a+b=12ab≠0).

【解析】

1)先證明四邊形AFCE為平行四邊形,再根據(jù)對(duì)角線(xiàn)互相垂直平分的平行四邊形是菱形作出判定;根據(jù)勾股定理即可求得AF的長(zhǎng);

2)分情況討論可知,當(dāng)P點(diǎn)在BF上、Q點(diǎn)在ED上時(shí),才能構(gòu)成平行四邊形,根據(jù)平行四邊形的性質(zhì)列出方程求解即可.

1)證明:∵四邊形ABCD是矩形,

ADBC,

∴∠CAD=ACB,∠AEF=CFE

EF垂直平分AC,垂足為O,

OA=OC,

∴△AOE≌△COF,

OE=OF

∴四邊形AFCE為平行四邊形,

又∵EFAC,

∴四邊形AFCE為菱形,

設(shè)菱形的邊長(zhǎng)AF=CF=xcm,則BF=8xcm,

RtABF中,AB=4cm,

由勾股定理得42+8x2=x2,

解得x=5

AF=5cm

2)①顯然當(dāng)P點(diǎn)在AF上時(shí),Q點(diǎn)在CD上,此時(shí)A、CP、Q四點(diǎn)不可能構(gòu)成平行四邊形;

同理P點(diǎn)在AB上時(shí),Q點(diǎn)在DECE上,也不能構(gòu)成平行四邊形.

因此只有當(dāng)P點(diǎn)在BF上、Q點(diǎn)在ED上時(shí),才能構(gòu)成平行四邊形,

∴以A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),PC=QA,

∵點(diǎn)P的速度為每秒5cm,點(diǎn)Q的速度為每秒4cm,運(yùn)動(dòng)時(shí)間為t秒,

PC=5tQA=124t,

5t=124t,

解得

∴以A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),秒.

②由題意得,以A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),點(diǎn)PQ在互相平行的對(duì)應(yīng)邊上.

分三種情況:

i)如圖1,當(dāng)P點(diǎn)在AF上、Q點(diǎn)在CE上時(shí),AP=CQ,即a=12b,得a+b=12

ii)如圖2,當(dāng)P點(diǎn)在BF上、Q點(diǎn)在DE上時(shí),AQ=CP,即12b=a,得a+b=12;

iii)如圖3,當(dāng)P點(diǎn)在AB上、Q點(diǎn)在CD上時(shí),AP=CQ,即12a=b,得a+b=12

綜上所述,ab滿(mǎn)足的數(shù)量關(guān)系式是a+b=12ab≠0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn) A y 軸正半軸上點(diǎn) B x 軸負(fù)半軸上,且 AB=2,∠BAO=15°,點(diǎn) P 是線(xiàn)段OA 上的一個(gè)動(dòng)點(diǎn),則 PB PA 的最小值為_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線(xiàn)l:y=mx﹣m+1(m為常數(shù),且m≠0)與坐標(biāo)軸交于A、B兩點(diǎn),若△AOB(O是原點(diǎn))的面積恰為2,則符合要求的直線(xiàn)l有( )
A.1條
B.2條
C.3條
D.4條

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)D、E分別是∠B的兩邊BCBA上的點(diǎn),∠DEB2BFBA上一點(diǎn).

1)如圖①,若DF平分∠BDE,求證:BDDE+EF;

2)如圖②,若DFDBE的外角平分線(xiàn),BDDE、EF三者有怎樣的數(shù)量關(guān)系?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A1(1,1)在直線(xiàn)y=x上,過(guò)點(diǎn)A1分別作y軸、x軸的平行線(xiàn)交直線(xiàn)y= x于點(diǎn)B1 , B2 , 過(guò)點(diǎn)B2作y軸的平行線(xiàn)交直線(xiàn)y=x于點(diǎn)A2 , 過(guò)點(diǎn)A2作x軸的平行線(xiàn)交直線(xiàn)y= x于點(diǎn)B3 , …,按照此規(guī)律進(jìn)行下去,則點(diǎn)An的橫坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的外角,的角平分線(xiàn)交于點(diǎn).

1)若,則;

2)探索的數(shù)量關(guān)系,并說(shuō)明理由;

3)若,,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】周長(zhǎng)相等的正三角形、正四邊形、正六邊形的面積S3、S4、S6間的大小關(guān)系是( )
A.S3>S4>S6
B.S6>S4>S3
C.S6>S3>S4
D.S4>S6>S3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,有若干個(gè)整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù)),其順序按圖中方向排列,如(10),(2,0),(2,1),(3,1),(3,0)…… 根據(jù)這個(gè)規(guī)律探索可得,第50個(gè)點(diǎn)的坐標(biāo)為(

A. (10,-5)B. (10,-1) C. (10,0) D. (101

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,EF∥AD,1=2,BAC=70°.將求∠AGD的過(guò)程填寫(xiě)完整.

解: EFAD,

∴∠2=____(____________________________)

又∵∠1=2

∴∠1=3(等量代換)

AB_____(_____________________________)

∴∠BAC+______=180°(___________________________)

∵∠BAC=70°

∴∠AGD=_______

查看答案和解析>>

同步練習(xí)冊(cè)答案