【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+2經(jīng)過(guò)點(diǎn)A(﹣1,0)和點(diǎn)B(4,0),且與y軸交于點(diǎn)C,點(diǎn)D的坐標(biāo)為(2,0),點(diǎn)P(m,n)是該拋物線上的一個(gè)動(dòng)點(diǎn),連接CA,CD,PD,PB.
(1)求該拋物線的解析式;
(2)當(dāng)△PDB的面積等于△CAD的面積時(shí),求點(diǎn)P的坐標(biāo);
(3)當(dāng)m>0,n>0時(shí),過(guò)點(diǎn)P作直線PE⊥y軸于點(diǎn)E交直線BC于點(diǎn)F,過(guò)點(diǎn)F作FG⊥x軸于點(diǎn)G,連接EG,請(qǐng)直接寫出隨著點(diǎn)P的運(yùn)動(dòng),線段EG的最小值.
【答案】(1);(2)點(diǎn)P的坐標(biāo)是(1,3)、(2,3)、(5,-3)或(-2,-3);(3)線段EG的最小值為..
【解析】
(1)根據(jù)拋物線y=ax2+bx+2經(jīng)過(guò)點(diǎn)A(-1,0)和點(diǎn)B(4,0),應(yīng)用待定系數(shù)法,求出該拋物線的解析式即可;
(2)首先根據(jù)三角形的面積的求法,求出△CAD的面積,即可求出△PDB的面積,然后求出BD=2,即可求出|n|=3,據(jù)此判斷出n=3或-3,再把它代入拋物線的解析式,求出x的值是多少,即可判斷出點(diǎn)P的坐標(biāo);
(3)首先應(yīng)用待定系數(shù)法,求出BC所在的直線的解析式,然后根據(jù)點(diǎn)P的坐標(biāo)是(m,n),求出點(diǎn)F的坐標(biāo),再根據(jù)二次函數(shù)最值的求法,求出EG2的最小值,即可求出線段EG的最小值.
解:(1)把A(-1,0),B(4,0)兩點(diǎn)的坐標(biāo)代入y=ax2+bx+2中,可得
,
解得:,
∴拋物線的解析式為:;
(2))∵拋物線的解析式為,
當(dāng)x=0時(shí),y=2,
∴點(diǎn)C的坐標(biāo)是(0,2),
∵點(diǎn)A(-1,0)、點(diǎn)D(2,0),
∴AD=2-(-1)=3,
∴S△CAD =,
∴S△PDB =3,
∵點(diǎn)B(4,0)、點(diǎn)D(2,0),
∴BD=2,
∴|n|=3×2÷2=3,
∴n=3或-3,
①當(dāng)n=3時(shí),
,
解得:m=1或m=2,
∴點(diǎn)P的坐標(biāo)是(1,3)或(2,3);
②當(dāng)n=-3時(shí),
解得m=5或m=-2,
∴點(diǎn)P的坐標(biāo)是(5,-3)或(-2,-3);
綜上,可得點(diǎn)P的坐標(biāo)是(1,3)、(2,3)、(5,-3)或(-2,-3);
(3)如圖,
設(shè)BC所在的直線的解析式是:y=mx+n,
∵點(diǎn)C的坐標(biāo)是(0,2),點(diǎn)B的坐標(biāo)是(4,0),
∴,
解得:,
∴BC所在的直線的解析式是:,
∵點(diǎn)P的坐標(biāo)是(m,n),
∴點(diǎn)F的坐標(biāo)是(4-2n,n),
∴
,
∴當(dāng)時(shí),線段EG有最小值:,
∴線段EG的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為軸于點(diǎn),反比例函數(shù)的圖像的一支分別交于點(diǎn),延長(zhǎng)交反比例函數(shù)的圖像的另一支于點(diǎn)E,已知D的縱坐標(biāo)為.
(1)求反比例函數(shù)的解析式及直線OA的解析式;
(2)連接BC,已知,求
(3)若在軸上有兩點(diǎn),將直線繞點(diǎn)旋轉(zhuǎn),仍與交于,能否構(gòu)成以為頂點(diǎn)的四邊形為菱形,如果能請(qǐng)求出的值,如果不能說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E是平行四邊形ABCD的邊CD的中點(diǎn),延長(zhǎng)AE交BC的延長(zhǎng)線于點(diǎn)F.
(1)求證:△ADE≌△FCE.
(2)若∠BAF=90°,BC=5,EF=3,求平行四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】便民”水泥代銷點(diǎn)銷售某種水泥,每噸進(jìn)價(jià)為250元,如果每噸銷售價(jià)定為290元時(shí),平均每天可售出16噸.
(1)若代銷點(diǎn)采取降低促銷的方式,試建立每噸的銷售利潤(rùn)y(元)與每噸降低x(元)之間的函數(shù)關(guān)系式;
(2)若每噸售價(jià)每降低5元,則平均每天能多售出4噸,問(wèn):每噸水泥的實(shí)際售價(jià)定為多少元時(shí),每天的銷售利潤(rùn)平均可達(dá)720元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】九(1)班組織班級(jí)聯(lián)歡會(huì),最后進(jìn)入抽獎(jiǎng)環(huán)節(jié),每名同學(xué)都有一次抽獎(jiǎng)機(jī)會(huì),抽獎(jiǎng)方案如下:將一副撲克牌中點(diǎn)數(shù)為“2”,“3”,“3”,“5”,“6”的五張牌背面朝上洗勻,先從中抽出1張牌,再?gòu)挠嘞碌?/span>4張牌中抽出1張牌,記錄兩張牌點(diǎn)數(shù)后放回,完成一次抽獎(jiǎng),記每次抽出兩張牌點(diǎn)數(shù)之差為,按表格要求確定獎(jiǎng)項(xiàng).
(1)用列表或畫(huà)樹(shù)狀圖的方法求出甲同學(xué)獲得一等獎(jiǎng)的概率;
(2)是否每次抽獎(jiǎng)都會(huì)獲獎(jiǎng),為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】移動(dòng)通信公司建設(shè)的鋼架信號(hào)塔(如圖1),它的一個(gè)側(cè)面的示意圖(如圖2).CD是等腰三角形ABC底邊上的高,分別過(guò)點(diǎn)A、點(diǎn)B作兩腰的垂線段,垂足分別為B1,A1,再過(guò)A1,B1分別作兩腰的垂線段所得的垂足為B2,A2,用同樣的作法依次得到垂足B3,A3,….若AB為3米,sinα=,則水平鋼條A2B2的長(zhǎng)度為( 。
A. 米B. 2米C. 米D. 米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形中,,,是的一點(diǎn),且,是上一點(diǎn),射線交的延長(zhǎng)線于點(diǎn),交于點(diǎn),連結(jié),,交于點(diǎn).
(1)當(dāng)點(diǎn)為中點(diǎn)時(shí),則 , ;(直接寫出答案)
(2)在整個(gè)運(yùn)動(dòng)過(guò)程中,的值是否會(huì)變化,若不變,求出它的值;若變化,請(qǐng)說(shuō)明理由;
(3)若為等腰三角形時(shí),請(qǐng)求出所有滿足條件的的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=ax2+bx﹣3與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,且OB=OC=3OA,求拋物線的解析式( 。
A.y=x2﹣2x﹣3B.y=x2﹣2x+3C.y=x2﹣2x﹣4D.y=x2﹣2x﹣5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)生的學(xué)習(xí)興趣如何是每位教師非常關(guān)注的問(wèn)題.為此,某校教師對(duì)該校部分學(xué)生的學(xué)習(xí)興趣進(jìn)行了一次抽樣調(diào)查(把學(xué)生的學(xué)習(xí)興趣分為三個(gè)層次,A層次:很感興趣;B層次:較感興趣;C層次:不感興趣);并將調(diào)查結(jié)果繪制成了圖①和圖②的統(tǒng)計(jì)圖(不完整).請(qǐng)你根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)此次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;
(2)將圖①補(bǔ)充完整;
(3)求圖②中C層次所在扇形的圓心角的度數(shù);
(4)根據(jù)抽樣調(diào)查的結(jié)果,請(qǐng)你估計(jì)該校1200名學(xué)生中大約有多少名學(xué)生對(duì)學(xué)習(xí)感興趣(包括A層次和B層次).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com