【題目】如圖,在△ABC中,AB=AC,D是AB的中點,且DE⊥AB,△BCE的周長為8cm,且AC﹣BC=2cm,求AB、BC的長.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】高速路上因趕時間超速而頻頻發(fā)生交通事故,這樣給自己和他人的生命安全帶來直接影響,為了解車速情況,一名執(zhí)法交警在高速路上隨機測試了6個小轎車的車速情況記錄如下:
車序號 | 1 | 2 | 3 | 4 | 5 | 6 |
車速(千米/時) | 100 | 95 | 106 | 100 | 120 | 100 |
則這6輛車車速的眾數(shù)和中位數(shù)(單位:千米/時)分別是( )
A.100,95
B.100,100
C.102,100
D.100,103
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=AC,∠A=36°,AB的中垂線交AC于點E,交AB于點D,下面4個結(jié)論:
①射線BE是∠ABC的平分線;②△BCE是等腰三角形;③△ABE是等腰三角形;④△ADE≌△BDE;
(1)判斷其中正確的結(jié)論是哪幾個?
(2)從你認為是正確的結(jié)論中選一個加以說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m,CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.
(2)如圖2,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?若成立,請給出證明;若不成立,請說明理由.
(3)拓展與應(yīng)用:如圖3,D、E是D、A、E三點所在直線m上的兩動點(D、A、E三點
互不重合),點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某烤鴨店在確定烤鴨的烤制時間時,主要依據(jù)的是下表的數(shù)據(jù):
鴨的質(zhì)量/kg | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 |
烤制時間/min | 40 | 60 | 80 | 100 | 120 | 140 | 160 | 180 |
若鴨的質(zhì)量為3.2kg時,烤制時間為_____min.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB交x軸于點A(a,0),交y軸于點B(0,b),且a、b滿足.
(1)點A的坐標為 ;點B的坐標為 ;
(2)如圖1,若點C的坐標為(-3,-2),且BE⊥AC于點E,OD⊥OC交BE延長線于D,試求點D的坐標;
(3)如圖2,M、N分別為OA、OB邊上的點,OM=ON,OP⊥AN交AB于點P,過點P 作PG⊥BM,交AN的延長線于點G,請寫出線段AG、OP與PG之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在菱形ABCD中,點E,O,F(xiàn)分別為AB,AC,AD的中點,連接CE,CF,OE,OF.
(1)求證:△BCE≌△DCF;
(2)當AB與BC滿足什么關(guān)系時,四邊形AEOF是正方形?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com