【題目】完成下面的證明:

已知:如圖,AB∥DE,求證:∠D+∠BCD﹣∠B=180°,

證明:過點(diǎn)CCF∥AB.

∵AB∥CF(已知),

∴∠B=      ).

∵AB∥DE,CF∥AB( 已知 ),

∴CF∥DE (   

∴∠2+   =180° (   

∵∠2=∠BCD﹣∠1,

∴∠D+∠BCD﹣∠B=180° (   ).

【答案】1,兩直線平行,內(nèi)錯(cuò)角相等,平行于同一條直線的兩條直線平行,∠D,兩直線平行,同旁內(nèi)角互補(bǔ),等量代換.

【解析】

根據(jù)平行線的性質(zhì)得出∠B=∠1,∠2+∠D=180°,代入求出即可.

證明:過點(diǎn)CCFAB,

ABCF(已知),

∴∠B=1(兩直線平行,內(nèi)錯(cuò)角相等),

ABDE,CFAB(已知),

CFDE (平行于同一條直線的兩條直線平行),

∴∠2+D=180° (兩直線平行,同旁內(nèi)角互補(bǔ)),

∵∠2=BCD-1,

∴∠D+BCD-B=180° (等量代換),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知k為實(shí)數(shù),關(guān)于x的一元二次方程(k+3x-2k+2x+k=0有兩個(gè)不相等的實(shí)數(shù)根。試判斷關(guān)于x的方程(k-1x-2k+1x+k=0 的根的情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,∠A=90°,CE⊥BD于E,AB=EC.

(1)求證:△ABD≌△ECB;

(2)若∠EDC=65°,求∠ECB的度數(shù);

(3)若AD=3,AB=4,求DC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】祥云橋位于省城太原南部,該橋塔主體由三根曲線塔柱組合而成,全橋共設(shè)13對(duì)直線型斜拉索,造型新穎,是三晉大地的一種象征.某數(shù)學(xué)綜合與實(shí)踐小組的同學(xué)把測(cè)量斜拉索頂端到橋面的距離作為一項(xiàng)課題活動(dòng),他們制訂了測(cè)量方案,并利用課余時(shí)間借助該橋斜拉索完成了實(shí)地測(cè)量.測(cè)量結(jié)果如下表.

項(xiàng)目

內(nèi)容

課題

測(cè)量斜拉索頂端到橋面的距離

測(cè)量示意圖

說明:兩側(cè)最長(zhǎng)斜拉索AC,BC相交于點(diǎn)C,分別與橋面交于A,B兩點(diǎn),且點(diǎn)A,B,C在同一豎直平面內(nèi).

測(cè)量數(shù)據(jù)

∠A的度數(shù)

∠B的度數(shù)

AB的長(zhǎng)度

38°

28°

234

(1)請(qǐng)幫助該小組根據(jù)上表中的測(cè)量數(shù)據(jù),求斜拉索頂端點(diǎn)CAB的距離(參考數(shù)據(jù):sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5)

(2)該小組要寫出一份完整的課題活動(dòng)報(bào)告,除上表的項(xiàng)目外,你認(rèn)為還需要補(bǔ)充哪些項(xiàng)目(寫出一個(gè)即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究

如圖,拋物線y=x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,連接AC,BC.點(diǎn)P是第四象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn),點(diǎn)P的橫坐標(biāo)為m,過點(diǎn)PPM⊥x軸,垂足為點(diǎn)M,PMBC于點(diǎn)Q,過點(diǎn)PPE∥ACx軸于點(diǎn)E,交BC于點(diǎn)F.

(1)求A,B,C三點(diǎn)的坐標(biāo);

(2)試探究在點(diǎn)P運(yùn)動(dòng)的過程中,是否存在這樣的點(diǎn)Q,使得以A,C,Q為頂點(diǎn)的三角形是等腰三角形.若存在,請(qǐng)直接寫出此時(shí)點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由;

(3)請(qǐng)用含m的代數(shù)式表示線段QF的長(zhǎng),并求出m為何值時(shí)QF有最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校260名學(xué)生參加植樹活動(dòng),要求每人植樹4﹣7顆,活動(dòng)結(jié)束后隨機(jī)抽查了20名學(xué)生每人的植樹數(shù)量,并分為四種類型,A:4顆;B:5顆;C:6顆;D:7顆.將各類的人數(shù)繪制成扇形圖(如圖1)和條形圖(如圖2),經(jīng)確認(rèn)扇形圖是正確的,而條形圖尚有一處錯(cuò)誤.

回答下列問題:

(1)寫出條形圖中存在的錯(cuò)誤,并說明理由;

(2)寫出這20名學(xué)生每人植樹量的眾數(shù)和中位數(shù);

(3)求這20名學(xué)生每人植樹量的平均數(shù),并估計(jì)這260名學(xué)生共植樹多少棵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市正在開展食品安全城市創(chuàng)建活動(dòng),為了解學(xué)生對(duì)食品安全知識(shí)的了解情況,學(xué)校隨機(jī)抽取了部分學(xué)生進(jìn)行問卷調(diào)查,將調(diào)查結(jié)果按照“A非常了解、B了解、C了解較少、D不了解四類分別進(jìn)行統(tǒng)計(jì),并繪制了下列兩幅統(tǒng)計(jì)圖(不完整).請(qǐng)根據(jù)圖中信息,解答下列問題:

(1)此次共調(diào)查了   名學(xué)生;

(2)扇形統(tǒng)計(jì)圖中D所在扇形的圓心角為   ;

(3)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;

(4)若該校共有800名學(xué)生,請(qǐng)你估計(jì)對(duì)食品安全知識(shí)非常了解的學(xué)生的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A(α,0)B(b,0),點(diǎn)Cy軸上,且由|a4|(b2)20

(1)SABC6,求C點(diǎn)的坐標(biāo);

(2)C向右平移,使OC平分∠ACB,點(diǎn)Px軸上B點(diǎn)右邊的一動(dòng)點(diǎn),PQOCQ點(diǎn).當(dāng)∠ABC-∠BAC60°時(shí),求∠APQ的度數(shù);

(3)(2)的條件下,將線段AC平移,使其經(jīng)過P點(diǎn)得線段EF,作∠APE的角平分線交OC的延長(zhǎng)線于點(diǎn)M.當(dāng)P點(diǎn)在x軸上運(yùn)動(dòng)時(shí),求∠MABC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,AB=AC,∠BAC=90°,分別過B,C向經(jīng)過點(diǎn)A的直線EF作垂線,垂足為E,F

1)如圖1,當(dāng)EF與斜邊BC不相交時(shí),請(qǐng)證明EF=BE+CF;

2)如圖2,當(dāng)EF與斜邊BC相交時(shí),其他條件不變,寫出EF、BE、CF之間的數(shù)量關(guān)系,并說明理由;

3)如圖3,猜想EF、BE、CF之間又存在怎樣的數(shù)量關(guān)系,寫出猜想,不必說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案