【題目】如圖,已知,的中點,過點.求證:相切.

【答案】詳見解析.

【解析】

證法一:連接,,,連接于點,利用線段垂直平分線的性質(zhì)和垂徑定理的推論證明垂直平分,然后利用垂徑定理和平行線的性質(zhì)求得,從而使問題得證;證法二:連接,,連接于點,利用垂徑定理的推論得到,,然后利用平行線的性質(zhì)求得,從而使問題得證;證法三:過點于點,延長于點,利用垂徑定理的推論得到的中點,然后判斷點與點是同一個點,然后然后利用平行線的性質(zhì)求得,從而使問題得證.

證明:證法一:連接,,,連接于點.

,的垂直平分線上.

的中點,,

的垂直平分線上,

垂直平分,,

,,,

為半徑的外端點,

相切.

證法二:連接,,連接于點.

的中點,,

,

,,,

為半徑的外端點,

相切.

證法三:過點于點,延長于點,

,的中點,

的中點,與點是同一個點.

,,

為半徑的外端點,

相切.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一段拋物線y=﹣xx﹣5)(0≤x≤5),記為C1,它與x軸交于點O,A1;將C1繞點A1旋轉(zhuǎn)180°C2,交x軸于點A2;將C2繞點A2旋轉(zhuǎn)180°C3,交x軸于點A3;如此進行下去,得到一波浪線,若點P2018,m)在此波浪線上,則m的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖ABC中,以AB為直徑的⊙OACBC的交點分別為DE

1)∠A68°,求∠CED的大小.

2)當DEBE時,證明:ABC為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在足夠大的空地上有一段長為30米的舊墻MN,某人利用舊墻和木欄圍成一個矩形菜園ABCD,其中AD≤MN,已知矩形菜園的一邊靠墻,另三邊一共用了80米木欄,設這個菜園垂直于墻的一邊長為x米.

1)若平行于墻的一邊長為y米,寫出yx的函數(shù)表達式子,并求出自變量x的取值范圍;

2)垂直于墻的一邊長為多少米時,這個矩形菜園ABCD的面積最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】使用家用燃氣灶燒開同一壺水所需的燃氣量(單位:)與旋鈕的旋轉(zhuǎn)角度(單位:度)()近似滿足函數(shù)關(guān)系y=ax2+bx+c(a≠0).如圖記錄了某種家用燃氣灶燒開同一壺水的旋鈕角度與燃氣量的三組數(shù)據(jù),根據(jù)上述函數(shù)模型和數(shù)據(jù),可推斷出此燃氣灶燒開一壺水最節(jié)省燃氣的旋鈕角度約為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在 RtABC 中BC=2,以 BC 的中點 O 為圓心的⊙O 分別與 AB,AC 相切于 D,E 兩點,的長為(

A.B.C.πD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4,BC=2,O為對角線AC的中點,點P、Q分別從A和B兩點同時出發(fā),在邊AB和BC上勻速運動,并且同時到達終點B、C,連接PO、QO并延長分別與CD、DA交于點M、N.在整個運動過程中,圖中陰影部分面積的大小變化情況是( )

A. 一直增大 B. 一直減小 C. 先減小后增大 D. 先增大后減小

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校根據(jù)課程設置要求,開設了數(shù)學類拓展性課程,為了解學生最喜歡的課程內(nèi)容,隨機抽取了部分學生進行問卷調(diào)查(每人必須且只選中其中一項),并將統(tǒng)計結(jié)果繪制成如下統(tǒng)計圖(不完整),請根據(jù)圖中信息回答問題:

1)求m,n的值.

2)補全條形統(tǒng)計圖.

3)該校共有1200名學生,試估計全校最喜歡“數(shù)學史話”的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù).

(1)當二次函數(shù)的圖象經(jīng)過坐標原點O(0,0),求二次函數(shù)的解析式;

(2)如圖,m=2,該拋物線與y軸交于點C,頂點為D求C、D兩點的坐標;

(3)(2)的條件下,x軸上是否存在一點P,使得PC+PD最短?若P點存在求出P點的坐標;若P點不存在請說明理由。

查看答案和解析>>

同步練習冊答案