【題目】如圖,一只螞蟻在網(wǎng)格(每小格邊長(zhǎng)為1)上沿著網(wǎng)格線運(yùn)動(dòng).它從格點(diǎn)處出發(fā)去看望格點(diǎn)B、CD等處的螞蟻,規(guī)定:向上向右走均為正,向下向左走均為負(fù).如:從AB記為:,從BA記為:,其中第一個(gè)數(shù)表示左右方向,第二個(gè)數(shù)表示上下方向.

1)填空:圖中,

2)若這只螞蟻從A處去M處的螞蟻的行走路線依次為,,,則點(diǎn)M的坐標(biāo)為(________________);

3)若圖中另有兩個(gè)格點(diǎn)Р、Q,且,,則從QA記為________________

【答案】1+3,-1D+1;(23

【解析】

1)根據(jù)題中的規(guī)定和觀察網(wǎng)格判斷;

2)分別根據(jù)縱橫坐標(biāo)進(jìn)行計(jì)算即可;

3)根據(jù)規(guī)則的坐標(biāo)減去的坐標(biāo)即為從QA的坐標(biāo).

解:(1)根據(jù)規(guī)定:向上向右走均為正,向下向左走均為負(fù)

觀察網(wǎng)格可知:

根據(jù)題意可知為向上走了3格,進(jìn)而可以判斷向右走了1格

;

2)根據(jù)題意螞蟻從A處去M

則點(diǎn)M的橫坐標(biāo)為:

則點(diǎn)M的縱坐標(biāo)為:

∴點(diǎn)M的坐標(biāo)為

3)∵,

,

點(diǎn)向右走2格,向上走4格到達(dá)點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AEBD的高,AE,BD交于點(diǎn)C,AE=BE,BD平分.

(1)求證:BC=2AD

(2)的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,BC邊上的高AG平分∠BAC.

(1)如圖1,求證:ABAC.

(2)如圖2,點(diǎn)D、E在△ABC的邊BC上,ADAE,BC10cm,DE6cm,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊三角形ABC的邊長(zhǎng)是2,M是高CH所在直線上的一個(gè)動(dòng)點(diǎn),連接MB,將線段BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BN,連接MN,則在點(diǎn)M運(yùn)動(dòng)過(guò)程中,線段MN長(zhǎng)度的最小值是(  )

A. B. 1 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拓展與探索:如圖,在正△ABC中,點(diǎn)EAC上,點(diǎn)DBC的延長(zhǎng)線上.

(1)如圖1AEECCD,求證:BEED;

(2)如圖2,若EAC上異于AC的任一點(diǎn),AECD(1)中結(jié)論是否仍然成立?為什么?

(3)EAC延長(zhǎng)線上一點(diǎn),且AECD,試探索BEED間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A(﹣2,0),B(4,0),拋物線y=ax2+bx﹣1過(guò)A、B兩點(diǎn),并與過(guò)A點(diǎn)的直線y=﹣x﹣1交于點(diǎn)C.

(1)求拋物線解析式及對(duì)稱軸;

(2)在拋物線的對(duì)稱軸上是否存在一點(diǎn)P,使四邊形ACPO的周長(zhǎng)最?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;

(3)點(diǎn)My軸右側(cè)拋物線上一點(diǎn),過(guò)點(diǎn)M作直線AC的垂線,垂足為N.問(wèn):是否存在這樣的點(diǎn)N,使以點(diǎn)M、N、C為頂點(diǎn)的三角形與AOC相似,若存在,求出點(diǎn)N的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,DBC邊上的一點(diǎn),ABDBBE平分∠ABC,交AC邊于點(diǎn)E,連接DE

(1)求證:△ABE≌△DBE;

(2)若∠A100°,∠C50°,求∠AEB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)是3,BP=CQ,連接AQ,DP交于點(diǎn)O,并分別與邊CD,BC交于點(diǎn)F,E,連接AE,下列結(jié)論:①AQ⊥DP;②OA2=OEOP;③S△AOD=S四邊形OECF;④當(dāng)BP=1時(shí),tan∠OAE=,其中正確結(jié)論的個(gè)數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(實(shí)驗(yàn)操作)如圖①,在中,,現(xiàn)將邊沿的平分線翻折,點(diǎn)落在邊的點(diǎn)處;再將線段沿翻折到線段,連接.

(探究發(fā)現(xiàn))若點(diǎn),三點(diǎn)共線,則的大小是______,的大小是________,此時(shí)三條線段,,之間的數(shù)量關(guān)系是________.

(應(yīng)用拓展)如圖②,將圖①中滿足(實(shí)驗(yàn)操作)與(探究發(fā)現(xiàn))的的邊延長(zhǎng)至,使得,連接,直接寫出的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案