【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù) (m為常數(shù))的圖象與x軸交于點(diǎn)A(﹣3,0),與y軸交于點(diǎn)C.以直線x=1為對(duì)稱軸的拋物線y=ax2+bx+c(a,b,c為常數(shù),且a≠0)經(jīng)過(guò)A,C兩點(diǎn),并與x軸的正半軸交于點(diǎn)B.

(1)求m的值及拋物線的函數(shù)表達(dá)式;
(2)設(shè)E是y軸右側(cè)拋物線上一點(diǎn),過(guò)點(diǎn)E作直線AC的平行線交x軸于點(diǎn)F.是否存在這樣的點(diǎn)E,使得以A,C,E,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)E的坐標(biāo)及相應(yīng)的平行四邊形的面積;若不存在,請(qǐng)說(shuō)明理由;
(3)若P是拋物線對(duì)稱軸上使△ACP的周長(zhǎng)取得最小值的點(diǎn),過(guò)點(diǎn)P任意作一條與y軸不平行的直線交拋物線于M1(x1 , y1),M2(x2 , y2)兩點(diǎn),試探究 是否為定值,并寫出探究過(guò)程.

【答案】
(1)

解:∵ 經(jīng)過(guò)點(diǎn)(﹣3,0),

∴0=- +m,解得m= ,

∴直線解析式為 ,C(0, ).

∵拋物線y=ax2+bx+c對(duì)稱軸為x=1,且與x軸交于A(﹣3,0),

∴另一交點(diǎn)為B(5,0),

設(shè)拋物線解析式為y=a(x+3)(x﹣5),

∵拋物線經(jīng)過(guò)C(0, ),

=a3(﹣5),解得a=- ,

∴拋物線解析式為y=- x2+ x+


(2)

解:假設(shè)存在點(diǎn)E使得以A、C、E、F為頂點(diǎn)的四邊形是平行四邊形,

則AC∥EF且AC=EF.如答圖1,

(i)當(dāng)點(diǎn)E在點(diǎn)E位置時(shí),過(guò)點(diǎn)E作EG⊥x軸于點(diǎn)G,

∵AC∥EF,∴∠CAO=∠EFG,

又∵ ,

∴△CAO≌△EFG,

∴EG=CO= ,即yE= ,

=- xE2+ xE+ ,解得xE=2(xE=0與C點(diǎn)重合,舍去),

∴E(2, ),SACEF= ;

(ii)當(dāng)點(diǎn)E在點(diǎn)E′位置時(shí),過(guò)點(diǎn)E′作E′G′⊥x軸于點(diǎn)G′,

同理可求得E′( +1,- ),SACF′E′=


(3)

解:要使△ACP的周長(zhǎng)最小,只需AP+CP最小即可.

如答圖2,連接BC交x=1于P點(diǎn),因?yàn)辄c(diǎn)A、B關(guān)于x=1對(duì)稱,根據(jù)軸對(duì)稱性質(zhì)以及兩點(diǎn)之間線段最短,可知此時(shí)AP+CP最。ˋP+CP最小值為線段BC的長(zhǎng)度).

∵B(5,0),C(0, ),

∴直線BC解析式為y=- x+

∵xP=1,∴yP=3,即P(1,3).

令經(jīng)過(guò)點(diǎn)P(1,3)的直線為y=kx+b,則k+b=3,即b=3﹣k,

則直線的解析式是:y=kx+3﹣k,

∵y=kx+3﹣k,y=- x2+ x+

聯(lián)立化簡(jiǎn)得:x2+(4k﹣2)x﹣4k﹣3=0,

∴x1+x2=2﹣4k,x1x2=﹣4k﹣3.

∵y1=kx1+3﹣k,y2=kx2+3﹣k,

∴y1﹣y2=k(x1﹣x2).

根據(jù)兩點(diǎn)間距離公式得到:

M1M2= = =

∴M1M2= = =4(1+k2).

又M1P= = = ;

同理M2P=

∴M1PM2P=(1+k2 =(1+k2 =(1+k2 =4(1+k2).

∴M1PM2P=M1M2,

=1為定值.


【解析】(1)首先求得m的值和直線的解析式,根據(jù)拋物線對(duì)稱性得到B點(diǎn)坐標(biāo),根據(jù)A、B點(diǎn)坐標(biāo)利用交點(diǎn)式求得拋物線的解析式;(2)存在點(diǎn)E使得以A、C、E、F為頂點(diǎn)的四邊形是平行四邊形.如答圖1所示,過(guò)點(diǎn)E作EG⊥x軸于點(diǎn)G,構(gòu)造全等三角形,利用全等三角形和平行四邊形的性質(zhì)求得E點(diǎn)坐標(biāo)和平行四邊形的面積.注意:符合要求的E點(diǎn)有兩個(gè),如答圖1所示,不要漏解;(3)本問(wèn)較為復(fù)雜,如答圖2所示,分幾個(gè)步驟解決:
第1步:確定何時(shí)△ACP的周長(zhǎng)最小.利用軸對(duì)稱的性質(zhì)和兩點(diǎn)之間線段最短的原理解決;第2步:確定P點(diǎn)坐標(biāo)P(1,3),從而直線M1M2的解析式可以表示為y=kx+3﹣k;第3步:利用根與系數(shù)關(guān)系求得M1、M2兩點(diǎn)坐標(biāo)間的關(guān),得到x1+x2=2﹣4k,x1x2=﹣4k﹣3.這一步是為了后續(xù)的復(fù)雜計(jì)算做準(zhǔn)備;第4步:利用兩點(diǎn)間的距離公式,分別求得線段M1M2、M1P和M2P的長(zhǎng)度,相互比較即可得到結(jié)論: =1為定值.這一步涉及大量的運(yùn)算,注意不要出錯(cuò),否則難以得出最后的結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道對(duì)于一個(gè)圖形,通過(guò)不同的方法計(jì)算圖形的面積可以得到一個(gè)數(shù)學(xué)等式

例如:由圖1可得到(a+b)=a+2ab+b

1 2 3

1)寫出由圖2所表示的數(shù)學(xué)等式:_____________________;寫出由圖3所表示的數(shù)學(xué)等式:_____________________

2)利用上述結(jié)論,解決下面問(wèn)題:已知a+b+c=11,bc+ac+ab=38,求a+b+c的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,∠A=100°,∠C=70°,點(diǎn)M、N分別在AB、BC上,將△BMN沿MN翻折,得△FMN.若MF∥AD,F(xiàn)N∥DC,則∠B的度數(shù)為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在正方形ABCD中,GCD上一點(diǎn),延長(zhǎng)BCE,使CE=CG,連接BG并延長(zhǎng)交DEF.

(1)求證:△BCG≌△DCE;

(2)將△DCE繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到△DAE′,判斷四邊形E′BGD是什么特殊四邊形,并說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,點(diǎn)D、E分別在邊AC、BC上(不與點(diǎn)A、B、C重合),點(diǎn)P是直線AB上的任意一點(diǎn)(不與點(diǎn)A、B重合).設(shè)∠PDA=x,∠PEB=y,∠DPE=m,∠C=n.

(1)如圖,當(dāng)點(diǎn)P在線段AB上運(yùn)動(dòng),且n=90°時(shí)

①若PD∥BC,PE∥AC,則m=_____;

②若m=50°,求x+y的值.

(2)當(dāng)點(diǎn)P在直線AB上運(yùn)動(dòng)時(shí),直接寫出x、y、m、n之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,若正方形EFGH由正方形ABCD繞某點(diǎn)旋轉(zhuǎn)得到,則可以作為旋轉(zhuǎn)中心的是(
A.M或O或N
B.E或O或C
C.E或O或N
D.M或O或C

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題情景:

如圖1,AB//CD,PAB=130°,PCD=120°,求∠APC的度數(shù).

小明的思路是:

過(guò)點(diǎn)PPE//AB,

∴∠PAB+APE=180°.

∵∠PAB=130°,∴∠APE=50°

AB//CD,PE//AB,PE//CD,

∴∠PCD+CPE=180°.

∵∠PCD=120°,∴∠CPE=60°

∴∠APC=APE+CPE=110°.

問(wèn)題遷移:

如果ABCD平行關(guān)系不變,動(dòng)點(diǎn)P在直線AB、CD所夾區(qū)域內(nèi)部運(yùn)動(dòng)時(shí),∠PAB,PCD的度數(shù)會(huì)跟著發(fā)生變化.

(1)如圖3,當(dāng)動(dòng)點(diǎn)P運(yùn)動(dòng)到直線AC右側(cè)時(shí),請(qǐng)寫出∠PAB,PCD和∠APC之間的數(shù)量關(guān)系?并說(shuō)明理由.

(2)如圖4,AQ,CQ分別平分∠PAB,PCD,那么∠AQC和角∠APC有怎擇的數(shù)量關(guān)系?

(3)如圖5,點(diǎn)P在直線AC的左側(cè)時(shí),AQ,CQ仍然平分∠PAB,PCD,請(qǐng)直接寫出AQC和角∠APC的數(shù)量關(guān)系

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】同慶中學(xué)為豐富學(xué)生的校園生活,準(zhǔn)備從軍躍體育用品商店一次性購(gòu)買若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同,每個(gè)籃球的價(jià)格相同),若購(gòu)買3個(gè)足球和2個(gè)籃球共需310元,購(gòu)買2個(gè)足球和5個(gè)籃球共需500元.

(1)購(gòu)買一個(gè)足球、一個(gè)籃球各需多少元?

(2)根據(jù)同慶中學(xué)的實(shí)際情況,需從軍躍體育用品商店一次性購(gòu)買足球和籃球共96個(gè),要求購(gòu)買足球和籃球的總費(fèi)用不超過(guò)5720元,這所中學(xué)最多可以購(gòu)買多少個(gè)籃球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校組織九年級(jí)學(xué)生參加漢字聽寫大賽,并隨機(jī)抽取部分學(xué)生成績(jī)作為樣本進(jìn)行分析,繪制成如下的統(tǒng)計(jì)表:

請(qǐng)根據(jù)所給信息,解答下列問(wèn)題:

(1)a=__________,b=__________;

(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;

(3)已知該年級(jí)有400名學(xué)生參加這次比賽,若成績(jī)?cè)?/span>90分以上(含90分)的為優(yōu),估計(jì)該年級(jí)成績(jī)?yōu)閮?yōu)的有多少人?

查看答案和解析>>

同步練習(xí)冊(cè)答案