【題目】如圖,E是ABCD的邊CD的中點(diǎn),延長AE交BC的延長線于點(diǎn)F.
(1)求證:△ADE≌△FCE.
(2)若∠BAF=90°,BC=5,EF=3,求CD的長.
【答案】(1)證明過程見解析;(2)8.
【解析】試題分析:(1)由平行四邊形的性質(zhì)得出AD∥BC,AB∥CD,證出∠DAE=∠F,∠D=∠ECF,由AAS證明△ADE≌△FCE即可;(2)由全等三角形的性質(zhì)得出AE=EF=3,由平行線的性質(zhì)證出∠AED=∠BAF=90°,由勾股定理求出DE,即可得出CD的長.
試題解析:(1)∵四邊形ABCD是平行四邊形, ∴AD∥BC,AB∥CD,
∴∠DAE=∠F,∠D=∠ECF, ∵E是ABCD的邊CD的中點(diǎn), ∴DE=CE,
在△ADE和△FCE中,,∴△ADE≌△FCE(AAS);
(2)∵ADE≌△FCE, ∴AE=EF=3, ∵AB∥CD, ∴∠AED=∠BAF=90°,
在ABCD中,AD=BC=5, ∴DE===4, ∴CD=2DE=8
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】與數(shù)軸上的點(diǎn)一一對應(yīng)的數(shù)是( )
A.分?jǐn)?shù)
B.有理數(shù)
C.無理數(shù)
D.實(shí)數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD在數(shù)軸上的位置如圖所示,點(diǎn)D、A對應(yīng)的數(shù)分別為0和1,若正方形ABCD繞著頂點(diǎn)順時針方向在數(shù)軸上連續(xù)翻轉(zhuǎn),翻轉(zhuǎn)1次后,點(diǎn)B所對應(yīng)的數(shù)為2;則翻轉(zhuǎn)2016次后,數(shù)軸上數(shù)2016所對應(yīng)的點(diǎn)是( 。
A. 點(diǎn)C B. 點(diǎn)D C. 點(diǎn)A D. 點(diǎn)B
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,AC=AD,M,N分別為AC,AD的中點(diǎn),
且∠ABM=∠BAM,連接BM,MN,BN.
(1)求證:BM=MN;
(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明隨機(jī)調(diào)查了若干市民租用公共自行車的騎車時間t(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如圖統(tǒng)計圖,請根據(jù)圖中信息,解答下列問題:
(1)這次被調(diào)查的總?cè)藬?shù)是多少?
(2)試求表示A組的扇形圓心角的度數(shù),并補(bǔ)全條形統(tǒng)計圖.
(3)如果騎自行車的平均速度為12km/h,請估算,在租用公共自行車的市民中,騎車路程不超過6km的人數(shù)所占的百分比.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com