【題目】探索題:(x1)(x1)x21,

(x1)(x2x1)x31,

x1)(x3x2x1)x41,

x1)(x4x3x2x1)x51.

1)觀察以上各式并猜想:

(x1)(x6x5x4x3x2x1)________________________

(x1)(xnxn1xn2x3x2x1) ________________________;

2)請(qǐng)利用上面的結(jié)論計(jì)算:

(250(2)49(2)48(2)1

②若x1007x1006x3x2x10,求x2016的值.

【答案】1)① ;② ;(2)① ;②1

【解析】

1)每一個(gè)式子的結(jié)果等于兩項(xiàng)的差,被減數(shù)的指數(shù)比第二個(gè)因式中第一項(xiàng)的指數(shù)大1,減數(shù)都為1;根據(jù)得出的規(guī)律直接寫出答案;

2)利用得出的規(guī)律計(jì)算得到結(jié)果.

解:(1)①(x1)(x6x5x4x3x2x1) ;

(x1)(xnxn1xn2x3x2x1)

2)①(250(2)49(2)48(2)1

=÷-2-1

= ;

②∵x1007x1006x3x2x10

∴(x-1)(x1007x1006x3x2x1= =0,

.

故答案為:(1)① ;② ;(2)① ;②1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】填空并完成以下證明:

已知:點(diǎn)P在直線CD上,∠BAP+∠APD=180°,∠1=∠2.

求證:AB∥CD,∠E=∠F.

證明:∵∠BAP+∠APD=180°,(已知)

∴AB∥   .(   

∴∠BAP=   .(   

∵∠1=∠2,(已知)

∠3=   ﹣∠1,

∠4=   ﹣∠2,

∴∠3=   (等式的性質(zhì))

∴AE∥PF.(   

∴∠E=∠F.(   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c與x軸的一個(gè)交點(diǎn)為A(3,0),與y軸的交點(diǎn)為點(diǎn)B(0,3),其頂點(diǎn)為C,對(duì)稱軸為x=1,

(1)求拋物線的解析式;

(2)已知點(diǎn)M為y軸上的一個(gè)動(dòng)點(diǎn),當(dāng)ABM為等腰三角形時(shí),求點(diǎn)M的坐標(biāo);

(3)將AOB沿x軸向右平移m個(gè)單位長(zhǎng)度(0<m<3)得到另一個(gè)三角形,將所得的三角形與ABC重疊部分的面積記為S,用m的代數(shù)式表示S,并求其最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BD是△ABC的角平分線,DE∥BC,交AB于點(diǎn)E,DF∥AB,交BC于點(diǎn)F,當(dāng)△ABC滿足_________條件時(shí),四邊形BEDF是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖1,在一塊寬為12m,長(zhǎng)為20m的矩形地面上修筑同樣寬的道路,余下的部分種上草坪.要使草坪的面積為180m2,求道路的寬;

(2)現(xiàn)在對(duì)該矩形區(qū)域進(jìn)行改造,如圖2,在正中央建一個(gè)與矩形的邊互相平行的正方形觀賞亭,觀賞亭的四邊連接四條與矩形的邊互相平行的且寬度相等的道路,已知道路的寬為正方形邊長(zhǎng)的若道路與觀賞亭的面積之和是矩形面積的,求道路的寬

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在ABC中,ABAC,點(diǎn)DBC邊上一點(diǎn)(不與點(diǎn)B、C重合),以AD為邊在AD的右側(cè)作ADE,使ADAE,∠DAE=∠BAC,連接CE,設(shè)∠BACα,∠BCEβ

1)線段BD、CE的數(shù)量關(guān)系是________;并說(shuō)明理由;

2)探究:當(dāng)點(diǎn)DBC邊上移動(dòng)時(shí),α,β之間有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;

3)如圖2,若∠BAC90°,CEBA的延長(zhǎng)線交于點(diǎn)F.求證:EFDC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,對(duì)角線ACBD相交于點(diǎn)O,AOCO,BODO,且∠ABC+ADC180°

1)求證:四邊形ABCD是矩形;

2)若∠ADF:∠FDC32DFAC,求∠BDF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC是以BC為底的等腰三角形,AD是邊BC上的高,點(diǎn)E、F分別是ABAC的中點(diǎn).

1)求證:四邊形AEDF是菱形;

2)如果四邊形AEDF的周長(zhǎng)為12,兩條對(duì)角線的和等于7,求四邊形AEDF的面積S

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水果經(jīng)銷商上月份銷售一種新上市的水果,平均售價(jià)為10/千克,月銷售量為1000千克.經(jīng)市場(chǎng)調(diào)查,若將該種水果價(jià)格調(diào)低至x/千克,則本月份銷售量y(千克)與x(元/千克)之間符合一次函數(shù)關(guān)系,并且得到了表中的數(shù)據(jù):

價(jià)格x(元/千克)

7

5

價(jià)格y(千克)

2000

4000

1)求yx之間的函數(shù)解析式;

2)已知該種水果上月份的成本價(jià)為5/千克,本月份的成本價(jià)為4/千克,要使本月份銷售該種水果所獲利潤(rùn)比上月份增加20%,同時(shí)又要讓顧客得到實(shí)惠,那么該種水果價(jià)格每千克應(yīng)調(diào)低至多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案