如圖,在△ABC,AB的垂直平分線交AC于D,若AC=5,BC=4,則△DBC的周長是(  )
分析:由AB的垂直平分線交AC于D,可得AD=BD,又由AC=5,BC=4,△DBC的周長=BC+AC,即可求得答案.
解答:解:∵AB的垂直平分線交AC于D,
∴AD=BD,
∵AC=5,BC=4,
∴△DBC的周長是:BC+BD+CD=BC+AD+CD=BC+AC=4+5=9.
故選B.
點評:此題考查了線段垂直平分線的性質(zhì).此題難度不大,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC中,∠C=90°,∠A=30°,BC=1,將另外一個含30°角的△EDF的30°角精英家教網(wǎng)的頂點D放在AB邊上,E、F分別在AC、BC上,當點D在AB邊上移動時,DE始終與AB垂直.
(1)設(shè)AD=x,CF=y,求y與x之間的函數(shù)解析式,并寫出函數(shù)自變量的取值范圍;
(2)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在△ABC中,AB=AC,AE是角平分線,BM平分∠ABC交AE于點M,經(jīng)過B,M兩點的⊙O交BC于點G,交AB于點精英家教網(wǎng)F,F(xiàn)B恰為⊙O的直徑.
(1)求證:AE與⊙O相切;
(2)當BC=4,AC=6,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

7、如圖,在△ABC中,D是BC上的一點,∠C=62°,∠CAD=32°,則∠ADB=
94
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,BE平分∠ABC,CF平分∠ACB,CF,BE交于點P,AC=4cm,BC=3cm,AB=5cm,則△CPB的面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,CD是高,CE為∠ACB的平分線.若AC=15,BC=20,CD=12,EF∥AC,則∠CEF的大小為
 

查看答案和解析>>

同步練習冊答案