2、如圖,在圖中,將大寫字母A繞著它右下側(cè)的頂點(diǎn)按順時(shí)針方向旋轉(zhuǎn)90度,請(qǐng)作出旋轉(zhuǎn)后的圖案.
分析:將其中的關(guān)鍵點(diǎn)繞上頂點(diǎn)順時(shí)針旋轉(zhuǎn)90°后,連接各關(guān)鍵點(diǎn)成“A”即可.
解答:解:所作圖形如下所示:
點(diǎn)評(píng):本題主要考查的是旋轉(zhuǎn)變換的作圖方法,在旋轉(zhuǎn)作圖時(shí),一定要明確三個(gè)要素:旋轉(zhuǎn)中心、旋轉(zhuǎn)方向、旋轉(zhuǎn)角度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在平面直角坐標(biāo)系中,二次函數(shù)y=a(x-2)2-1圖象的頂點(diǎn)為P,與x軸交點(diǎn)為A、B精英家教網(wǎng),與y軸交點(diǎn)為C,連接BP并延長(zhǎng)交y軸于點(diǎn)D.
(1)寫出點(diǎn)P的坐標(biāo);
(2)連接AP,如果△APB為等腰直角三角形,求a的值及點(diǎn)C、D的坐標(biāo);
(3)在(2)的條件下,連接BC、AC、AD,點(diǎn)E(0,b)在線段CD(端點(diǎn)C、D除外)上,將△BCD繞點(diǎn)E逆時(shí)針方向旋轉(zhuǎn)90°,得到一個(gè)新三角形.設(shè)該三角形與△ACD重疊部分的面積為S,根據(jù)不同情況,分別用含b的代數(shù)式表示S,選擇其中一種情況給出解答過程,其它情況直接寫出結(jié)果;判斷當(dāng)b為何值時(shí),重疊部分的面積最大寫出最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

在數(shù)學(xué)文化節(jié)第一輪活動(dòng)中,我們以探討一個(gè)趣題的方式紀(jì)念了數(shù)學(xué)大師歐拉誕辰300周年.著名數(shù)學(xué)家拉普拉斯說過:“讀讀歐拉,他是我們所有人的導(dǎo)師.”是。W拉在數(shù)學(xué)上的貢獻(xiàn)實(shí)在太多了,即使在初等數(shù)學(xué)中也到處可見他的身影.我們?cè)賮砜纯礆W拉研究過的“36軍官問題”:
從6支部隊(duì)中各選出6名不同軍銜的軍官,將這36名軍官排成一個(gè)6行6列的方陣,要求每行每列的6個(gè)軍官分別來自不同的部隊(duì),并具有不同的軍銜.用大寫字母A,B,C,D,E,F(xiàn)分別表示6支不同的部隊(duì),用小寫字母a,b,c,d,e,f分別表示6種不同的軍銜,于是問題轉(zhuǎn)化為:在6×6的方格陣中,每個(gè)方格分別填入一個(gè)大寫字母和一個(gè)小寫字母,使每行和每列中的大小寫字母只能各出現(xiàn)一次(通常稱這種方陣為歐拉方陣或正交拉丁方).歐拉攪盡腦汁,也沒能排出符合要求的6×6方陣,他猜想并不存在這樣的6×6方陣.100多年以后,才有人證明了歐拉的這個(gè)猜想是正確的.
于是歐拉繼而探究了其他情形,例如,他分別作出了3×3,4×4,5×5正交拉丁方,并證明了當(dāng)n除以4的余數(shù)不等于2時(shí),n×n正交拉丁方是存在的.
正交拉丁方在藥品配方試驗(yàn)設(shè)計(jì)等方面有著廣泛應(yīng)用.現(xiàn)在流行的“數(shù)獨(dú)”游戲和比賽,就是發(fā)源于拉丁方問題呢!
如圖是一個(gè)5×5正交拉丁方,請(qǐng)將剩余的字母填上

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 北大師八年級(jí)版 2009-2010學(xué)年 第6期 總第162期 北師大版 題型:068

如圖,在網(wǎng)格中有一大寫字母“Z”形,將這個(gè)圖形繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,請(qǐng)你作出旋轉(zhuǎn)后的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在圖中,將大寫字母A繞著它右下側(cè)的頂點(diǎn)按順時(shí)針方向旋轉(zhuǎn)90度,請(qǐng)作出旋轉(zhuǎn)后的圖案.

查看答案和解析>>

同步練習(xí)冊(cè)答案