【題目】(10分)如圖,△ABC中,邊AB、AC的垂直平分線分別交BC于D、E.
(1)若BC=10,則△ADE周長是多少?為什么?
(2)若∠BAC=128°,則∠DAE的度數(shù)是多少?為什么?
【答案】(1)△ADE周長為10;(2)∠DAE=76°.
【解析】
試題(1)根據(jù)垂直平分線性質(zhì)得AD=BD,AE=EC.所以△ADE周長=BC;
(2)∠DAE=∠BAC﹣(∠BAD+∠CAE).根據(jù)三角形內(nèi)角和定理及等腰三角形性質(zhì)求解.
解:(1)C△ADE=10.
∵AB、AC的垂直平分線分別交BC于D、E,
∴AD=BD,AE=CE.
C△ADE=AD+DE+AE=BD+DE+CE=BC=10.
(2)∠DAE=76°.
∵AB、AC的垂直平分線分別交BC于D、E,
∴AD=BD,AE=CE.
∴∠B=∠BAD,∠C=∠CAE.
∵∠BAC=128°,
∴∠B+∠C=52°.
∴∠DAE=∠BAC﹣(∠BAD+∠CAE)
=∠BAC﹣(∠B+∠C)=76°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合題。
(1)如圖1,在正方形ABCD中,點E,H分別在BC,AB上,AE與DH交于O,若AE=DH,求證:AE⊥DH;
(2)如圖2,在正方形ABCD中,點H,E,G,F(xiàn)分別在AB,BC,CD,DA上,EF與GH交于O,若EF=HG,探究線段EF與HG的位置關(guān)系,并說明理由;
(3)如圖3所示,在(2)問條件下,若HF∥GE,試探究線段FH、線段EG與線段EF的數(shù)量關(guān)系,并說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC、BD相交于點O,DE∥AC,AE∥BD.
(1)求證:四邊形AODE是矩形;
(2)若AB=2,AC=2,求四邊形AODE的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為慶祝“六一”兒童節(jié),某市中小學(xué)統(tǒng)一組織文藝匯演,甲、乙兩所學(xué)校共92人(其中甲校的人數(shù)多于乙校的人數(shù),且甲校的人數(shù)不足90人)準(zhǔn)備統(tǒng)一購買服裝參加演出;下面是某服裝廠給出的演出服裝的價格表
購買服裝的套數(shù) | 1套至45套 | 46套至90套 | 91套以上 |
每套服裝的價格 | 60元 | 50元 | 40元 |
(1)如果兩所學(xué)校分別單獨購買服裝一共應(yīng)付5000元,甲、乙兩所學(xué)校各有多少學(xué)生準(zhǔn)備參加演出?
(2)如果甲校有10名同學(xué)抽調(diào)去參加書法繪畫比賽不能參加演出,請你為兩所學(xué)校設(shè)計一種最省錢的購買服裝方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是邊AB的中點,連接DE,△ADE沿DE折疊后得到△FDE,點F在矩形ABCD的內(nèi)部,延長DF交于BC于點G.
(1)求證:FG=BG;
(2)若AB=6,BC=4,求DG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=kx+b分別與x軸、y軸交于A、B兩點,過點B的拋物線y=﹣ (x﹣2)2+m的頂點P在這條直線上,以AB為邊向下方做正方形ABCD.
(1)當(dāng)m=2時,k= , b=;當(dāng)m=﹣1時,k= , b=;
(2)根據(jù)(1)中的結(jié)果,用含m的代數(shù)式分別表示k與b,并證明你的結(jié)論;
(3)當(dāng)正方形ABCD的頂點C落在拋物線的對稱軸上時,求對應(yīng)的拋物線的函數(shù)關(guān)系式;
(4)當(dāng)正方形ABCD的頂點D落在拋物線上時,直接寫出對應(yīng)的直線y=kx+b的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】榮慶公司計劃從商店購買同一品牌的臺燈和手電筒,已知購買一個臺燈比購買一個手電筒多用20元,若用400元購買臺燈和用160元購買手電筒,則購買臺燈的個數(shù)是購買手電筒個數(shù)的一半.
(1)求購買該品牌一個臺燈、一個手電筒各需要多少元?
(2)經(jīng)商談,商店給予榮慶公司購買一個該品牌臺燈贈送一個該品牌手電筒的優(yōu)惠,如果榮慶公司需要手電筒的個數(shù)是臺燈個數(shù)的2倍還多8個,且該公司購買臺燈和手電筒的總費用不超過670元,那么榮慶公司最多可購買多少個該品牌臺燈?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,直線MN是等邊△ABC底邊BC的中垂線,點P在直線MN上,且使△PAB、△PAC、△PBC都是等腰三角形,滿足上述條件的點P的個數(shù)有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是△ABC的角平分線,DE⊥AB,DF⊥BC垂足分別為E、F.
(1)求證:BE=BF;
(2)若△ABC的面積為70,AB=16,DE=5,則BC= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com