(2013•濱湖區(qū)一模)如圖,AB是半圓O的直徑,AB=10,過點A的直線交半圓于點C,且AC=6,連結(jié)BC,點D為BC的中點.已知點E在直線AC上,△CDE與△ACB相似,則線段AE的長為
3或
2
3
或9或
34
3
3或
2
3
或9或
34
3
分析:根據(jù)E點在直線AC上,得出對應(yīng)點不同求出的EC長度不同,分別得出即可.
解答:解:∵AB是半圓O的直徑,
∴∠ACB=90°,
∵AB=10,AC=6,
∴BC=
102-62
=8,
∵點D為BC的中點,
∴CD=4,
當(dāng)DE∥AB時,
△CED∽△CAB,
CE
AC
=
CD
BC

EC
6
=
4
8
,
解得:EC=3,
∴AE=6-EC=3,
當(dāng)
CD
AC
=
CE′
CB
,且∠ACB=∠DCE′時,△CE′D∽△CBA,
4
6
=
CE′
8
,
解得:CE′=
16
3

∴AE′=6-
16
3
=
2
3
;
當(dāng)
CD
AC
=
CE1
BC
,且∠ACB=∠DCE1時,△CE1D∽△CBA,
4
6
=
CE1
8
,
解得:CE1=
16
3
,
∴AE1=6+
16
3
=
34
3
;
當(dāng)
CD
BC
=
E″C
AC
,且∠ACB=∠DCE″時,△CE″D∽△CBA,
4
8
=
E″C
6
,
解得:CE″=3,
∴AE″=6+3=9;
綜上所述:點E在直線AC上,△CDE與△ACB相似,則線段AE的長為3或
2
3
或9或
34
3

故答案為:3或
2
3
或9或
34
3
點評:此題主要考查了相似三角形的判定與性質(zhì),注意在直線AC上有一點E,進行分類討論得出是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濱湖區(qū)一模)若拋物線y=x2-x+m與x軸只有一個公共點,則m=
1
4
1
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濱湖區(qū)一模)在5張完全相同的卡片上分別畫上等邊三角形、平行四邊形、等腰梯形、正六邊形和圓. 在看不見圖形的情況下隨機摸出1張,則這張卡片上的圖形是中心對稱圖形的概率是
3
5
3
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濱湖區(qū)一模)無錫地鐵1、2號線即將于2014年通車,為了解市民對地鐵票的定價意向,市物價局向社會公開征集定價意見.現(xiàn)某校課外小組也開展了“你認為無錫地鐵起步價定為多少合適”的問卷調(diào)查,征求社區(qū)居民的意見,并將調(diào)查結(jié)果整理后制成了如下統(tǒng)計圖:

根據(jù)統(tǒng)計圖解答:
(1)同學(xué)們一共隨機調(diào)查了
300
300
人;
(2)請你把條形統(tǒng)計圖補充完整;
(3)如果在該社區(qū)隨機咨詢一位居民,那么該居民支持“起步價為2元”的概率是
0.4
0.4
;
(4)假定該社區(qū)有1萬人,請估計該社區(qū)支持“起步價為3元”的居民大約有
3500
3500
人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濱湖區(qū)一模)已知拋物線y=x2-2ax+a2 (a為常數(shù),a>0),G為該拋物線的頂點.
(1)如圖1,當(dāng)a=2時,拋物線與y軸交于點M,求△GOM的面積;
(2)如圖2,將拋物線繞頂點G逆時針旋轉(zhuǎn)90°,所得新圖象與y軸交于A、B兩點(點A在點B的上方),D為x軸的正半軸上一點,以O(shè)D為一對角線作平行四邊形OQDE,其中Q點在第一象限.QE交OD于點C,若QO平分∠AQC,AQ=2QC.
①求證:△AQO≌△EQO;
②若QD=OG,試求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濱湖區(qū)一模)Rt△ABC在直角坐標(biāo)系內(nèi)的位置如圖1所示,反比例函數(shù)y=
k
x
(k≠0)
在第一象限內(nèi)的圖象與BC邊交于點D(4,m),與直線AB:y=
1
2
x+b交于點E(2,n).
(1)m=
1
2
n
1
2
n
,點B的縱坐標(biāo)為
n+1
n+1
;(用含n的代數(shù)式表示);
(2)若△BDE的面積為2,設(shè)直線AB與y軸交于點F,問:在射線FD上,是否存在異于點D的點P,使得以P、B、F為頂點的三角形與△ABC相似?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
(3)在(2)的條件下,現(xiàn)有一動點M,從O點出發(fā),沿x軸的正方向,以每秒2個單位的速度運動,設(shè)運動時間為t(s),問:是否存在這樣的t,使得在直線AB上,有且只有一點N,滿足∠MNC=45°?若存在,請求出所有符合條件的t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案