【題目】如圖,△ABC和△CDE都是等邊三角形,且∠EBD=72°,則∠AEB的度數是______.
【答案】132°
【解析】
由已知條件推導出△ACE≌△BCD,從而∠DBC=∠CAE,再通過角之間的轉化,利用三角形內角和定理能求出∠AEB的度數.
解:∵△ABC和△CDE都是等邊三角形,且∠EBD=72°,
∴AC=BC,CE=CD,∠ACB=∠ECD=60°,
又∵∠ACB=∠ACE+∠BCE,∠ECD=∠BCE+∠BCD,
∴∠BCD=∠ACE,
∴△ACE≌△BCD,
∴∠DBC=∠CAE,
∴72°∠EBC=60°∠BAE,
∴72°(60°∠ABE)=60°∠BAE,
∴∠ABE+∠BAE=48°,
∴∠AEB=180°(∠ABE+∠BAE)=180°48°=132°.
故答案為:132°.
科目:初中數學 來源: 題型:
【題目】如圖,已知點E在正方形ABCD的邊AB上,以BE為邊向正方形ABCD外部作正方形BEFG,連接DF,M、N分別是DC、DF的中點,連接MN.若AB=7,BE=5,則MN=_______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某超市對今年“元旦”期間銷售A、B、C三種品牌的綠色雞蛋情況進行了統(tǒng)計,并繪制如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖.根據圖中信息解答下列問題:
(1)該超市“元旦”期間共銷售 個綠色雞蛋,A品牌綠色雞蛋在扇形統(tǒng)計圖中所對應的扇形圓心角是 度;
(2)補全條形統(tǒng)計圖;
(3)如果該超市的另一分店在“元旦”期間共銷售這三種品牌的綠色雞蛋1500個,請你估計這個分店銷售的B種品牌的綠色雞蛋的個數?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,D是等邊△ABC邊AB上的一點,且AD:DB=1:2,現將△ABC折疊,使點C與D重合,折痕為EF,點E、F分別在AC和BC上,則CE:CF的值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知AB∥CD,∠ABE與∠CDE兩個角的角平分線相交于點F,
(1)如圖1,若∠E=80°,求∠BFD的度數.
(2)如圖2,若∠ABM=∠ABF,∠CDM=∠CDF,試寫出∠M與∠E之間的數量關系并證明你的結論.
(3)若∠ABM=∠ABF,∠CDM=∠CDF,∠E=m°,請直接用含有n,m°的代數式表示出∠M.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一棵樹高h(m)與生長時間n(年)之間有一定關系,請你根據下表中數據,寫出h(m)與n(年)之間的關系式:_____.
n/年 | 2 | 4 | 6 | 8 | … |
h/m | 2.6 | 3.2 | 3.8 | 4.4 | … |
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一個不透明的盒子里,裝有四個分別標有數字1,2,3,4的小球,它們的形狀、大小、質地等完全相同,小明先從盒子里隨機取出一個小球,記下數字為x,放回盒子搖勻后,再由小華隨機取出一個小球,記下數字為y.
(1)用列表法或畫樹形圖表示出(x,y)的所有可能出現的結果;
(2)求小明、小華各取一次小球所確定的點(x,y)落在二次函數y=x2的圖象上的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,D是BC邊的中點,點E與點D關于AB對稱,連接AE、BE,分別延長AE、CB交于點F,若∠F=48°,則∠C的度數是( 。
A. 21°B. 52°C. 69°D. 74°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在中,,將繞點順時針旋轉至,點的對應點分別是,連接線段與線段交于點M,連接.
(1)如圖1,求證:;
(2)如圖1,求證:OM平分;
(3)如圖2,若,求的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com