【題目】如圖,OAOC,OBOD,下面結論中,其中說法正確的是( 。


①∠AOB=COD;
②∠AOB+COD=90°;
③∠BOC+AOD=180°;
④∠AOC-COD=BOC.

A①②③

B①②④

C①③④

D②③④

【答案】C

【解析】本題考查了余角和補角,垂直的定義,是基礎題,根據(jù)垂直的定義和同角的余角

相等分別計算,然后對各小題分析判斷即可得解.

解:OAOC,OBOD,

∴∠AOC=BOD=90°,

∴∠AOB+BOC=COD+BOC=90°,

∴∠AOB=COD,故正確;

AOB+COD不一定等于90°,故錯誤;

BOC+AOD=90°-AOB+90°+AOB=180°,故正確;

AOC-COD=AOC-AOB=BOC,故正確;

綜上所述,說法正確的是①③④

故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀下面例題的解法,然后解答問題:

例:若多項式2x3-x2+m分解因式的結果中有因式2x+1,求實數(shù)m的值.

解:設2x3-x2+m=(2x+1)·A(A為整式).

2x3-x2+m=(2x+1)·A=0,則2x+1=0A=0.

2x+1=0,解得x=-.

x=-是方程2x3-x2+m=0的解. 2×(-)3-(-)2+m=0,即--+m=0. m=.

(1)若多項式x2+px-6分解因式的結果中有因式x-3,則實數(shù)p=

(2)若多項式x3+5x2+7x+q分解因式的結果中有因式x+1,求實數(shù)q的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在x軸上方,∠BOA=90°且其兩邊分別與反比例函數(shù)y=﹣ 、y= 的圖象交于B、A兩點,則∠OAB的正切值為()
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點B、E分別在直線ACDF上,若∠AGB=∠EHF,∠C=∠D,可以證明∠A=∠F.請完成下面證明過程中的各項“填空”.

證明:∵∠AGB=∠EHF(理由:

∠AGB= (對頂角相等)

∴∠EHF=∠DGF,∴DB∥EC(理由:

=∠DBA(兩直線平行,同位角相等)

又∵∠C=∠D,∴∠DBA=∠D,

∴DF∥ (內(nèi)錯角相等,兩直線平行)

∴∠A=∠F(理由: ).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在學習三角形知識時,發(fā)現(xiàn)如下三個有趣的結論:在Rt△ABC中,∠A=90°,BD平分∠ABC,M為直線AC上一點,ME⊥BC,垂足為E,∠AME的平分線交直線AB于點F.

(1)如圖①,M為邊AC上一點,則BD、MF的位置關系是

如圖②,M為邊AC反向延長線上一點,則BD、MF的位置關系是 ;

如圖③,M為邊AC延長線上一點,則BD、MF的位置關系是 ;

(2)請就圖①、圖②、或圖③中的一種情況,給出證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,DE∥AB.請根據(jù)已知條件進行推理,分別得出結論,并在括號內(nèi)注明理由.

(1)∵DE∥AB,( 已知 )

∴∠2=   . (  ,  

(2)∵DE∥AB,(已知 )

∴∠3=   .(  ,  

(3)∵DE∥AB(已知 ),

∴∠1+   =180°.(  ,  

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,∠ABC=∠ADC,BFDE分別平分∠ABC與∠ADC.∠1=∠3,求證:ABDC

證明:∵∠ABC=∠ADC ( )

( )

BF、DE分別平分∠ABC與∠ADC ( )

( )

∴∠______=∠______ ( )

∵∠1=∠3( )

∴∠2=∠______ (等量代換)

________ ( )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店用1000元購進一批套尺,很快銷售一空;商店又用1500元購進第二批同款套尺,購進單價比第一批貴25%,所購數(shù)量比第一批多100套.

(1)求第一批套尺購進的單價;

(2)若商店以每套4元的價格將這兩批套尺全部售出,可以盈利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先化簡,再求值:( )÷ ,其中x的值從不等式組 的整數(shù)解中選取.

查看答案和解析>>

同步練習冊答案