如圖,在平行四邊形ABCD中,AB=5,BC=8,AE⊥BC,垂足為E,.則∠CDE的正切值是   
【答案】分析:由已知條件可先求出BE的長,然后利用勾股定理求出AE的長,再根據(jù)平行四邊形的性質和得到∠CDE=∠CED=∠ADE,所以tan∠CDE=tan∠ADE問題的解.
解答:解:∵Rt△ABE中,cosB==,
∵AB=5,
∴BE=3,
∴AE==4,
∵四邊形ABCD是平行四邊形,
∴AD=BC=8,
∵CD=AB=5,CE=BC-BE=8-3=5,
∴CD=CE,
∴∠CDE=∠CED=∠ADE.
∴tan∠CDE=tan∠ADE==
故答案為:
點評:本題考查了解直角三角形的運用、勾股定理的運用、平行四邊形的性質和等腰三角形的判定和性質,解題的關鍵是找到圖形中相等的角.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

17、如圖,在平行四邊形ABCD中,EF∥AD,GH∥AB,EF、GH相交于點O,則圖中共有
9
個平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,∠ABC的平分線交CD于點E,∠ADC的平分線交AB于點F,證明:四邊形DFBE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平行四邊形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.點M是邊AD上一點,且DM:AD=1:3.點E、F分別從A、C同時出發(fā),以1厘米/秒的速度分別沿AB、CB向點B運動(當點F運動到點B時,點E隨之停止運動),EM、CD精英家教網(wǎng)的延長線交于點P,F(xiàn)P交AD于點Q.設運動時間為x秒,線段PC的長為y厘米.
(1)求y與x之間函數(shù)關系式,并寫出自變量x的取值范圍;
(2)當x為何值時,PF⊥AD?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,AB=2
2
,AO=
3
,OB=
5
,則下列結論中不正確的是( 。
A、AC⊥BD
B、四邊形ABCD是菱形
C、△ABO≌△CBO
D、AC=BD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•同安區(qū)一模)如圖,在平行四邊形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,則AD的長為
4cm
4cm

查看答案和解析>>

同步練習冊答案