【題目】已知:如圖,在Rt△ABC中,∠ACB=90°,AC=5,BC=12.在直線AC、BC上分別取一點(diǎn)M、N,使得△AMN≌△ABN,則CN=__________.
【答案】或.
【解析】
分兩種情況:①當(dāng)∠BAN=∠MAN,且AM=AB時(shí),則BN=MN,且AM=AB=13,求出CM,設(shè)CN=x,在Rt△MCN中,由勾股定理得出方程,解方程即可;
②當(dāng)∠BAN=∠MAN,且AM=AB時(shí),則BN=MN,且AM=AB=13,求出CM=18,設(shè)CN=x,則BN=MN=x+12,在Rt△MCN中,由勾股定理得出方程,解方程即可.
①如圖1所示:
若△AMN≌△ABN,則BN=MN,且AM=AB=13,∴CM=8,
設(shè)CN=x,在Rt△MCN中,MC2+CN2=MN2,即82+x2=(12–x)2,
解得x= ,∴CN= ;
②如圖2所示:
若△AMN≌△ABN,則BN=MN,且AM=AB=13,∴CM=18,
設(shè)CN=x,則BN=MN=x+12,
在Rt△MCN中,MC2+CN2=MN2,
即182+x2=(12+x)2,解得x= ,∴CN= ;
綜上所述:CN的長為或.
故答案為:或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)ykxb的圖象與x軸交點(diǎn)為 A3,0,與y軸交點(diǎn)為 B ,且與正比例函數(shù)的圖象交于點(diǎn)C(m,4).
(1)求點(diǎn)C 的坐標(biāo);
(2)求一次函數(shù)ykxb的表達(dá)式;
(3)利用圖象直接寫出當(dāng)x取何值時(shí),kxb>.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,點(diǎn)E在BC上,以CE為直徑的⊙O交AB于點(diǎn)F,AO∥EF
(1)求證:AB是⊙O的切線;
(2)如圖2,連結(jié)CF交AO于點(diǎn)G,交AE于點(diǎn)P,若BE=2,BF=4,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)學(xué)活動(dòng)課上,小麗為了測(cè)量校園內(nèi)旗桿AB的高度,站在教學(xué)樓的C處測(cè)得旗桿底端B的俯角為45°,測(cè)得旗桿頂端A的仰角為30°.已知旗桿與教學(xué)樓的距離BD=9m,請(qǐng)你幫她求出旗桿的高度(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在某住房小區(qū)的建設(shè)中,為了提高業(yè)主的宜居環(huán)境,小區(qū)準(zhǔn)備在一個(gè)長為米,寬為米的長方形草坪上修建兩條寬為米的通道.
(1)剩余草坪的面積是多少平方米?
(2)當(dāng),時(shí),剩余草坪的面積是多少平方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù) y kx b 的圖象與 x 軸交點(diǎn)為 A3, 0,與 y 軸交點(diǎn)為 B ,且與正比例函數(shù)的圖象交于點(diǎn)C(m,4).
(1)求點(diǎn)C 的坐標(biāo);
(2)求一次函數(shù) y kx b 的表達(dá)式;
(3)若點(diǎn) P 是 y 軸上一點(diǎn),且BPC 的面積為 6,請(qǐng)直接寫出點(diǎn) P 的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象過A(2,0),B(0,-1)和C(4,5)三點(diǎn)。
(1)求二次函數(shù)的解析式;
(2)設(shè)二次函數(shù)的圖象與軸的另一個(gè)交點(diǎn)為D,求點(diǎn)D的坐標(biāo);
(3)在同一坐標(biāo)系中畫出直線,并寫出當(dāng)在什么范圍內(nèi)時(shí),一次函數(shù)的值大于二次函數(shù)的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,射線AP在△ABC的外側(cè),點(diǎn)B關(guān)于AP的對(duì)稱點(diǎn)為D,連接CD交射線AP于點(diǎn)E,連接BE.
(1)根據(jù)題意補(bǔ)全圖形;
(2)求證:CD=EB+EC;
(3)求證:∠ABE=∠ACE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明學(xué)習(xí)電學(xué)知識(shí)后,用四個(gè)開關(guān)按鍵(每個(gè)開關(guān)按鍵閉合的可能性相等)、一個(gè)電源和一個(gè)燈泡設(shè)計(jì)了一個(gè)電路圖
(1)若小明設(shè)計(jì)的電路圖如圖1(四個(gè)開關(guān)按鍵都處于打開狀態(tài))如圖所示,求任意閉合一個(gè)開關(guān)按鍵,燈泡能發(fā)光的概率;
(2)若小明設(shè)計(jì)的電路圖如圖2(四個(gè)開關(guān)按鍵都處于打開狀態(tài))如圖所示,求同時(shí)時(shí)閉合其中的兩個(gè)開關(guān)按鍵,燈泡能發(fā)光的概率.(用列表或樹狀圖法)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com