【題目】如圖,AB∥CD,點(diǎn)E,F分別在AB,CD上,連接EF,∠AEF,∠CFE的平分線交于點(diǎn)G,∠BEF,∠DFE的平分線交于點(diǎn)H.易證∠EHF=∠EGF=∠GEH=90°,從而可知四邊形EGFH是矩形.
小明繼續(xù)進(jìn)行了探索,過(guò)G作MN∥EF,分別交AB,CD于點(diǎn)M,N,過(guò)H作PQ∥EF,分別交AB,CD于點(diǎn)P,Q,得到四邊形MNQP,此時(shí),他猜想四邊形MNQP是菱形,請(qǐng)?jiān)谙铝锌蛑醒a(bǔ)全他的證明思路.
由AB∥CD,MN∥EF,PQ∥EF,易證四邊形MNQP是平行四邊形.要證平行四邊形MNQP是菱形,只要證MN=NQ.由已知條件_____,MN∥EF,可得NG=NF,故只要證GM=FQ,即證△MGE≌△QFH.易證_____,_____,故只要證∠MGE=∠QFH,易證∠MGE=∠GEF,∠QFH=∠EFH,_____,即可得證.
【答案】FG平分∠CFE GE=FH ∠GME=∠FQH ∠GEF=∠EFH
【解析】
利用菱形的判定方法首先得出要證MNQP是菱形,只要證MN=NQ,再證∠MGE=∠QFH得出即可
由AB∥CD,MN∥EF,PQ∥EF,易證四邊形MNQP是平行四邊形,
要證MNQP是菱形,只要證MN=NQ,由已知條件:FG平分∠CFE,MN∥EF,
故只要證GM=FQ,即證△MGE≌△QFH,易證GE=FH、∠GME=∠FQH.
故只要證∠MGE=∠QFH,易證∠MGE=∠GEF,∠QFH=∠EFH,∠GEF=∠EFH,即可得證;
故答案為:FG平分∠CFE,GE=FH、∠GME=∠FQH,∠GEF=∠EFH.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,點(diǎn)是斜邊的中點(diǎn).點(diǎn)從點(diǎn)出發(fā)以的速度向點(diǎn)運(yùn)動(dòng),點(diǎn)同時(shí)從點(diǎn)出發(fā)以一定的速度沿射線方向運(yùn)動(dòng),規(guī)定當(dāng)點(diǎn)到終點(diǎn)時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為秒,連接、.
(1)填空:______;
(2)當(dāng)且點(diǎn)運(yùn)動(dòng)的速度也是時(shí),求證:;
(3)若動(dòng)點(diǎn)以的速度沿射線方向運(yùn)動(dòng),在點(diǎn)、點(diǎn)運(yùn)動(dòng)過(guò)程中,如果存在某個(gè)時(shí)間,使得的面積是面積的兩倍,請(qǐng)你求出時(shí)間的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一條平坦的公路旁邊建造了A,B兩棟住房,這兩棟住房與小明所就讀的西湖中學(xué)在同一條直線上,如圖,已知A棟住房有6層,每層高4 m;B棟住房共3層,每層也是4 m,且A,B兩棟樓相距30 m,小明家住在A棟樓的第5層,放學(xué)后,小明從學(xué)校向這兩棟樓走來(lái).
問(wèn):(1)小明離B棟樓多遠(yuǎn)時(shí),他才能完全看不到他家的那層樓房?
(2)小明要想完全看到他家的那層樓房,他離B棟樓的距離要滿足什么條件(小明的身高不計(jì))?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列圖形都是由同樣大小的菱形按照一定規(guī)律所組成的,其中第①個(gè)圖形中一共有2個(gè)空心菱形,第②個(gè)圖形中一共有5個(gè)空心菱形,第③個(gè)圖形中一共有11個(gè)空心菱形,…,按此規(guī)律排列下去,第⑨個(gè)圖形中空心菱形的個(gè)數(shù)為( )
A.68B.76C.86D.104
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,∠B=30°,AD是角平分線,DE⊥AB于E,AD、CE相交于點(diǎn)H,則圖中的等腰三角形有( 。
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形ABCD的對(duì)角線相交于點(diǎn)O,∠COE=45°,過(guò)點(diǎn)C作CE⊥BD于點(diǎn)E,
(1)如圖1,若CB=1,求△CED的面積;
(2)如圖2,過(guò)點(diǎn)O作OF⊥DB于點(diǎn)O,OF=OD,連接FC,點(diǎn)G是FC中點(diǎn),連接GE,求證:DC=2GE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等邊三角形,頂點(diǎn)C在y軸的負(fù)半軸上,點(diǎn)A(1,),點(diǎn)B在第一象限,經(jīng)過(guò)點(diǎn)A的反比例函數(shù)y=(x>0)的圖象恰好經(jīng)過(guò)頂點(diǎn)B,則△ABC的邊長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先仔細(xì)閱讀材料,再嘗試解決問(wèn)題:我們?cè)谇蟠鷶?shù)式的最大或最小值時(shí),通過(guò)利用公式對(duì)式子作如下變形:
,
因?yàn)?/span>,
所以,
因此有最小值2,
所以,當(dāng)時(shí),,的最小值為2.
同理,可以求出的最大值為7.
通過(guò)上面閱讀,解決下列問(wèn)題:
(1)填空:代數(shù)式的最小值為______________;代數(shù)式的最大值為______________;
(2)求代數(shù)式的最大或最小值,并寫出對(duì)應(yīng)的的取值;
(3)求代數(shù)式的最大或最小值,并寫出對(duì)應(yīng)的、的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC在直角坐標(biāo)系中.
(1)若把△ABC向上平移2個(gè)單位,再向左平移1個(gè)單位得到△A1B1C1,畫出△A1B1C1,并寫出點(diǎn)A1,B1,C1的坐標(biāo);
(2)求△ABC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com