【題目】如圖1,以ABC的邊AB為直徑作O,交AC邊于點EBD平分ABEACF,交O于點D,且BDE=∠CBE

(1)求證:BCO的切線;

(2)延長ED交直線AB于點P,如圖2,若PA=AO,DE=3,DF=2,求的值及AO的長.

【答案】(1)答案見解析;(2),AO=

【解析】試題分析:(1)根據(jù)圓周角定理可知∠BAE+∠EBA=90°,由∠BAE=∠BDE,∠BDE=∠CBE,所以∠EBA+∠EBC=90°.

2)易證ODDE,從而可知,易證△EDF∽△BDE,DE2=DFDB,從而可求出DB的長度,由勾股定理可知AB的長度.

試題解析:解:(1)∵AB是直徑,∴∠BAE+∠EBA=90°.∵∠BAE=∠BDE,∠BDE=∠CBE,∴∠EBA+∠EBC=90°,∴BC是⊙O的切線;

2)連接OD.∵BD平分∠ABE,∴∠OBD=∠EBD.∵∠ODB=∠OBD,∴∠ODB=∠DBE,∴ODBE.∵PA=AO,∴.∵∠DEF=∠DBA,∴∠DEF=∠EBD.∵∠EDF=∠EDB,∴△EDF∽△BDE,∴,∴DE2=DFDB,∴DB=,∴由勾股定理可知:AB2=AD2+BD2,∴AB=,∴AO=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知RtABCRtADE,其中∠ACB=AED=90°.

(1)將這兩個三角形按圖①方式擺放,使點E落在AB上,DE的延長線交BC于點F.求證:BF+EF=DE;

(2)改變ADE的位置,使DEBC的延長線于點F(如圖②),則(1)中的結論還成立嗎?若成立,加以證明;若不成立,寫出此時BF、EFDE之間的等量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】低碳環(huán)保,你我同行”.近幾年,各大城市的公共自行車給市民出行帶來了極大的方便.圖①是公共自行車的實物圖,圖②是公共自行車的車架示意圖,點A.D、C、E在同一條直線上,CD=30cm,DF=20cm,AF=25cm,F(xiàn)D⊥AE于點D,座桿CE=15cm,且∠EAB=75°.

(1)求AD的長;

(2)求點EAB的距離.(參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】畫圖題:(不寫畫法)

(1)如圖①,在 10×10 的正方形網(wǎng)格中,每個小正方形的邊長為1個單位. 請作出△ABC 繞點P逆時針旋轉 90°的△A′B′C′;

(2)如圖②,四邊形A′B′C′D′是由四邊形ABCD繞某一點旋轉得到的,請通過作圖確定這個點,并把它命名為點O,再把四邊形ABCD關于點O的中心對稱圖形A′B′C′D′畫出來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某景區(qū)商店以2元的批發(fā)價進了一批紀念品.經(jīng)調(diào)查發(fā)現(xiàn),每個定價3元,每天可以能賣出500件,而且定價每上漲0.1元,其銷售量將減少10件.根據(jù)規(guī)定:紀念品售價不能超過批發(fā)價的2.5倍.

1)當每個紀念品定價為3.5元時,商店每天能賣出________件;

2)如果商店要實現(xiàn)每天800元的銷售利潤,那該如何定價?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A,B的坐標分別為(1,0)(3,0),現(xiàn)同時將點A,B分別向上平移2個單位長度,再向右平移1個單位長度,得到A,B的對應點C,D,連接AC,BD,CD.

(1)直接寫出點C,D的坐標,求出四邊形ABDC的面積;

(2)x軸上是否存在一點F,使得三角形DFC的面積是三角形DFB面積的2倍,若存在,請求出點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某次籃球聯(lián)賽初賽階段,每隊場比賽,每場比賽都要分出勝負,每隊勝一場分, 負一場得分,積分超過分才能獲得參賽資格.

(1)已知甲隊在初賽階段的積分為分,甲隊初賽階段勝、負各多少場;

(2)如果乙隊要獲得參加決賽資格,那么乙隊在初賽階段至少要勝多少場?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】端午節(jié)放假期間,小明和小華準備到宜賓的蜀南竹海(記為A)、興文石海(記為B)、夕佳山居民(記為C)、李莊古鎮(zhèn)(記為D)中的一個景點去游玩,他們各自在這四個景點中任選一個,每個景點被選中的可能性相同.

(1)小明選擇去蜀南竹海旅游的概率為________;

(2)用畫樹狀圖或列表的方法求小明和小華都選擇去興文石海旅游的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點,點在第一象限,軸于點軸于點.一次函數(shù)的圖象分別交軸、軸于點、,且,,

(1)求點的坐標;

(2)求一次函數(shù)與反比例函數(shù)的解析式:

(3)根據(jù)圖象寫出當時,一次函數(shù)的值小于反比例函數(shù)的值的的取值范圍.

查看答案和解析>>

同步練習冊答案