【題目】計算:
(1)0.36+(-7.4)+0.3+(-0.6)+0.64;(2)3+(-2)+5+(-8);
(3)(-103)+(+1)+(-97)+(+100)+(-1);
(4)(-2)+(-0.38)+(-)+(+0.38);
(5)(-9)+15+(-3)+(-22.5)+(-15);
(6)[(+)+(-3.5)+(-6)]+[(+2.5)+(+6)+(+)].
【答案】(1)-6.7;(2)-2;(3)-99;(4)-3;(5)-35;(6)0
【解析】
根據(jù)有理數(shù)的加法運算律進行運算即可.
解:(1)原式=(0.36+0.3+0.64)+[(-7.4)+(-0.6)].
=1.3-8=-6.7;
(2)3+(-2)+5+(-8).
=3+5+.
=9+(-11).
=-2;
(3)原式=[(-103)+(-97)]++100.
=-200++100=-99;
(4)(-2)+(-0.38)+(-)+(+0.38).
=+[(-0.38)+(+0.38)].
=-3+0.
=-3;
(5)原式=[(-9)+(-15)]+[15+(-3)]+(-22.5).
=[(-9)+(-15)+(-)+(-)]+[15+(-3)++(-)]+(-22.5).
=-25+12.5+(-22.5).
=-25+[12.5+(-22.5)].
=-25+(-10)=-35;
(6)+[(+2.5)+(+6)+(+)].
=(+)+(-3.5)+(-6)+(+2.5)+(+6)+(+).
=+[-3.5+(+2.5)]+[(-6)+(+6)].
=1+(-1)+0.
=0.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點,與y軸交于C(0,﹣3).
(1)求拋物線的解析式;
(2)D是y軸正半軸上的點,OD=3,在線段BD上任取一點E(不與B,D重合),經(jīng)過A,B,E三點的圓交直線BC于點F,
①試說明EF是圓的直徑;
②判斷△AEF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有理數(shù)x,y在數(shù)軸上對應點如圖所示:
(1)在數(shù)軸上表示﹣x,|y|;
(2)試把x,y,0,﹣x,|y|這五個數(shù)從小到大用“<”號連接,
(3)化簡:|x+y|﹣|y﹣x|+|y|.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平行四邊形ABCD中,連接BD,AD=6cm,BD=8cm,∠DBC=90°,現(xiàn)將△AEF沿BD的方向勻速平移,速度為2cm/s,同時,點G從點D出發(fā),沿DC的方向勻速移動,速度為2cm/s.當△AEF停止移動時,點G也停止運動,連接AD,AG,EG,過點E作EH⊥CD于點H,如圖2所示,設△AEF的移動時間為t(s)(0<t<4).
(1)當t=1時,求EH的長度;
(2)若EG⊥AG,求證:EG2=AEHG;
(3)設△AGD的面積為y(cm2),當t為何值時,y可取得最大值,并求y的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知∠AOB=100°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(本題中的角均為大于0°且小于等于180°的角).
(1)如圖1,當OB、OC重合時,求∠EOF的度數(shù);
(2)當∠COD從圖1所示位置繞點O順時針旋轉n°(0<n<90)時,∠AOE﹣∠BOF的值是否為定值?若是定值,求出∠AOE﹣∠BOF的值;若不是,請說明理由.
(3)當∠COD從圖1所示位置繞點O順時針旋轉n°(0<n<180)時,滿足∠AOD+∠EOF=6∠COD,則n=__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一輛快車從甲地駛往乙地,一輛慢車從乙地駛往甲地,兩車同時出發(fā),勻速行駛.設行駛的時間為x(時),兩車之間的距離為y(千米),圖中的折線表示從兩車出發(fā)至快車到達乙地過程中y與x之間的函數(shù)關系.根據(jù)圖中信息:
(1)求線段AB所在直線的函數(shù)解析式;
(2) 可求得甲乙兩地之間的距離為 千米;
(3)已知兩車相遇時快車走了180千米,則快車從甲地到達乙地所需時間為 小時.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知⊙O是以AB為直徑的△ABC的外接圓,過點A作⊙O的切線交OC的延長線于點D,交BC的延長線于點E.
(1)求證:∠DAC=∠DCE;
(2)若AB=2,sin∠D= , 求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標系中,O為坐標原點,點A的坐標為(1,a),點B的坐標為(b,1),點C的坐標為(c,0),其中a、b滿足(a+b﹣8)2+|a﹣b+2|=0.
(1)求A、B兩點的坐標;
(2)當△ABC的面積為6時,求點C的坐標;
(3)當4≤S△ABC≤10時,求點C的橫坐標c的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,D為AC上一點,DE⊥AB于點E,AC=12,BC=5.
(1)求cos∠ADE的值;
(2)當DE=DC時,求AD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com