【題目】在彈簧限度內(nèi),彈簧掛上物體后彈簧的長度與所掛物體的質(zhì)量之間的關(guān)系如下表:
所掛物體的質(zhì)量/千克 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
彈簧的長度/ | 12 | 12.5 | 13 | 13.5 | 14 | 14.5 | 15 | 15.5 | 16 |
(1)彈簧不掛物體時(shí)的長度是多少?
(2)如果用表示彈性限度內(nèi)物體的質(zhì)量,用表示彈簧的長度,寫出與的關(guān)系式.
(3)如果此時(shí)彈簧最大掛重量為25千克,你能預(yù)測當(dāng)掛重為14千克時(shí),彈簧的長度是多少?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線形拱橋,當(dāng)拱頂離水面2m時(shí),水面寬4m,則水面下降1m時(shí),水面寬度增加_____m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有兩堆背面完全相同的撲克,第一堆正面分別寫有數(shù)字1、2、3、4,第二堆正面分別寫有數(shù)字1、2、3.分別混合后,小玲從第一堆中隨機(jī)抽取一張,把卡片上的數(shù)字作為被減數(shù);小惠從第二堆中隨機(jī)抽取一張,把卡片上的數(shù)字作為減數(shù),然后計(jì)算出這兩個(gè)數(shù)的差.
(1)請用畫樹狀圖或列表的方法,求這兩數(shù)差為0的概率;
(2)小玲與小惠作游戲,規(guī)則是:若這兩數(shù)的差為非負(fù)數(shù),則小玲勝;否則,小惠勝.你認(rèn)為該游戲規(guī)則公平嗎?如果公平,請說明理由.如果不公平,請你修改游戲規(guī)則,使游戲公平.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系內(nèi),已知點(diǎn)、點(diǎn),動(dòng)點(diǎn)從點(diǎn)開始在線段上以每秒個(gè)單位長度的速度向點(diǎn)移動(dòng),同時(shí)動(dòng)點(diǎn)從點(diǎn)開始在線段上以每秒個(gè)單位長度的速度向點(diǎn)移動(dòng),設(shè)點(diǎn)、移動(dòng)的時(shí)間為秒.
求點(diǎn)的坐標(biāo);
當(dāng)為何值時(shí),的面積為個(gè)平方單位?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在面積為32cm2的等邊三角形ABC中,AD是BC邊上的中線,點(diǎn)E、F是AD上的兩點(diǎn),則圖中陰影部分的面積是_______ cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解下列方程:
(1)2x(2x+5)=(x﹣1)(2x+5) (2)x2+2x﹣5=0.
(3)x2﹣4x﹣1=0 (用公式法) (4)2x2+1=3x(用配方法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班“數(shù)學(xué)興趣小組”對函數(shù)y=﹣x2+2|x|+1的圖象和性質(zhì)進(jìn)行了探究,探究過程如下,請補(bǔ)充完整.
(1)自變量x的取值范圍是全體實(shí)數(shù),x與y的幾組對應(yīng)值列表如下:
x | … | ﹣3 | ﹣ | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … | |
y | … | ﹣2 | ﹣ | m | 2 | 1 | 2 | 1 | ﹣ | ﹣2 | … |
其中,m= .
(2)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),畫出了函數(shù)圖象的一部分,請畫出該函數(shù)圖象的另一部分.
(3)觀察函數(shù)圖象,寫出兩條函數(shù)的性質(zhì).
(4)進(jìn)一步探究函數(shù)圖象發(fā)現(xiàn):
①方程﹣x2+2|x|+1=0有 個(gè)實(shí)數(shù)根;
②關(guān)于x的方程﹣x2+2|x|+1=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:
①b<0;②4a+2b+c<0;③a﹣b+c>0;④(a+c)2<b2.其中正確的結(jié)論是
A.①② B.①③ C.①③④ D.①②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com