如下圖,OA,OB是兩條射線,C是OA上一點,D,E是OB上兩點,則圖中共有(    )條線段。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

幾何模型:
條件:如下圖,A、B是直線l同旁的兩個定點.
精英家教網(wǎng)
問題:在直線l上確定一點P,使PA+PB的值最。
方法:作點A關于直線l的對稱點A′,連接A′B交l于點P,則PA+PB=A′B的值最小(不必證明).
模型應用:
(1)如圖1,正方形ABCD的邊長為2,E為AB的中點,P是AC上一動點.連接BD,由正方形對稱性可知,B與D關于直線AC對稱.連接ED交AC于P,則PB+PE的最小值是
 
;
(2)如圖2,⊙O的半徑為2,點A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一動點,求PA+PC的最小值;
(3)如圖3,∠AOB=45°,P是∠AOB內一點,PO=10,Q、R分別是OA、OB上的動點,求△PQR周長的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源:第25章《圖形的變換》?碱}集(24):25.3 軸對稱變換(解析版) 題型:解答題

幾何模型:
條件:如下圖,A、B是直線l同旁的兩個定點.

問題:在直線l上確定一點P,使PA+PB的值最小.
方法:作點A關于直線l的對稱點A′,連接A′B交l于點P,則PA+PB=A′B的值最小(不必證明).
模型應用:
(1)如圖1,正方形ABCD的邊長為2,E為AB的中點,P是AC上一動點.連接BD,由正方形對稱性可知,B與D關于直線AC對稱.連接ED交AC于P,則PB+PE的最小值是______;
(2)如圖2,⊙O的半徑為2,點A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一動點,求PA+PC的最小值;
(3)如圖3,∠AOB=45°,P是∠AOB內一點,PO=10,Q、R分別是OA、OB上的動點,求△PQR周長的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年浙江省湖州市中考數(shù)學模擬試卷(四)(解析版) 題型:解答題

幾何模型:
條件:如下圖,A、B是直線l同旁的兩個定點.

問題:在直線l上確定一點P,使PA+PB的值最。
方法:作點A關于直線l的對稱點A′,連接A′B交l于點P,則PA+PB=A′B的值最小(不必證明).
模型應用:
(1)如圖1,正方形ABCD的邊長為2,E為AB的中點,P是AC上一動點.連接BD,由正方形對稱性可知,B與D關于直線AC對稱.連接ED交AC于P,則PB+PE的最小值是______;
(2)如圖2,⊙O的半徑為2,點A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一動點,求PA+PC的最小值;
(3)如圖3,∠AOB=45°,P是∠AOB內一點,PO=10,Q、R分別是OA、OB上的動點,求△PQR周長的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年浙江省金華市中考數(shù)學模擬試卷(六)(解析版) 題型:解答題

幾何模型:
條件:如下圖,A、B是直線l同旁的兩個定點.

問題:在直線l上確定一點P,使PA+PB的值最小.
方法:作點A關于直線l的對稱點A′,連接A′B交l于點P,則PA+PB=A′B的值最。ú槐刈C明).
模型應用:
(1)如圖1,正方形ABCD的邊長為2,E為AB的中點,P是AC上一動點.連接BD,由正方形對稱性可知,B與D關于直線AC對稱.連接ED交AC于P,則PB+PE的最小值是______;
(2)如圖2,⊙O的半徑為2,點A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一動點,求PA+PC的最小值;
(3)如圖3,∠AOB=45°,P是∠AOB內一點,PO=10,Q、R分別是OA、OB上的動點,求△PQR周長的最小值.

查看答案和解析>>

同步練習冊答案