【題目】如圖,正六邊形ABCDEF內(nèi)接于⊙O,若⊙O的半徑為3,則陰影部分的面積為__(結(jié)果保留π).

【答案】

【解析】

首先連接OC,OE,分別交BD,DF于點(diǎn)M,N,易證得SOBM=SDCM,同理:SOFN=SDEN,則可得S陰影=S扇形OCE

解:連接OC,OE,分別交BD,DF于點(diǎn)M,N,
∵正六邊形ABCDEF內(nèi)接于⊙O,
∴∠BOC=60°,∠BCD=∠COE=120°,
∵OB=OC,
∴△OBC是等邊三角形,
∴∠OBC=∠OCB=60°,
∴∠OCD=∠OCB,
∵BC=CD,
∴∠CBD=∠CDM=30°,BM=DM,
∴∠OBM=30°,SDCM=SBCM,
∴∠OBM=∠CBD,
∴OM=CM,
∴SOBM=SBCM,
∴SOBM=SDCM,
同理:SOFN=SDEN,
∴S陰影=S扇形OCE==3π.
故答案為:3π.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,對角線AC、BD相交于點(diǎn)O,AOOCBOOD,且∠AOB2∠OAD.

(1)求證:四邊形ABCD是矩形;

(2)∠AOB∶∠ODC4∶3,求∠ADO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DABCBC邊上一點(diǎn),連接AD,作ABD的外接圓,將ADC沿直線AD折疊,點(diǎn)C的對應(yīng)點(diǎn)E落在上.

1)求證:AE=AB

2)若∠CAB=90°,cosADB=,BE=2,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:

材料1.若一元二次方程ax2+bx+c=0(a0)的兩根為x1,x2,則x1+x2=-,x1x2=

材料2.已知實(shí)數(shù)m,n滿足m2-m-1=0,n2-n-1=0,且mn,求的值.

解:由題知m,n是方程x2-x-1=0的兩個不相等的實(shí)數(shù)根,

根據(jù)材料1m+n=1,mn=-1,

解決問題:

(1)一元二次方程x2-4x-3=0的兩根為x1,x2,則x1+x2= ,x1x2=

(2)已知實(shí)數(shù)m,n滿足2m2-2m-1=0,2n2-2n-1=0,且mn,m2n+mn2的值.

(3)已知實(shí)數(shù)p,q滿足p2=3p+2,2q2=3q+1,且p2q,求p2+4q2 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為矩形,E為BC邊中點(diǎn),以AD為直徑的O與AE交于點(diǎn)F.

(1)求證:四邊形AOCE為平行四邊形;

(2)求證:CF與O相切;

(3)若F為AE的中點(diǎn),求ADF的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O的半徑為2,∠AOB=120°.

(1)點(diǎn)O到弦AB的距離為  ;.

(2)若點(diǎn)P為優(yōu)弧AB上一動點(diǎn)(點(diǎn)P不與A、B重合),設(shè)∠ABP=α,將ABP沿BP折疊,得到A點(diǎn)的對稱點(diǎn)為A′;

∠α=30°,試判斷點(diǎn)A′⊙O的位置關(guān)系;

BA′⊙O相切于B點(diǎn),求BP的長;

若線段BA′與優(yōu)弧APB只有一個公共點(diǎn),直接寫出α的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) y =kx2 +(k +1)x +1(k 為實(shí)數(shù)),

(1)當(dāng) k=3 時,求此函數(shù)圖象與 x 軸的交點(diǎn)坐標(biāo);

(2)判斷此函數(shù)與 x 軸的交點(diǎn)個數(shù),并說明理由;

(3)當(dāng)此函數(shù)圖象為拋物線,且頂點(diǎn)在 x 軸下方,頂點(diǎn)到 y 軸的距離為 2,求 k 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1l2Ol1l2分別相切于點(diǎn)A和點(diǎn)B.點(diǎn)M和點(diǎn)N分別是l1l2上的動點(diǎn),MN沿l1l2平移.⊙O的半徑為1,1=60°.有下列結(jié)論:①MN=;②若MN與⊙O相切,則AM=;③若∠MON=90°,則MN與⊙O相切;④l1l2的距離為2,其中正確的有( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過點(diǎn)P(2,)作x軸的平行線交y軸于點(diǎn)A,交雙曲線于點(diǎn)N,作PM⊥AN交雙曲線于點(diǎn)M,連接AM,若PN=4.

(1)求k的值;

(2)設(shè)直線MN解析式為y=ax+b,求不等式的解集.

查看答案和解析>>

同步練習(xí)冊答案