(2007•成都)已知:如圖,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點(diǎn)F,H是BC邊的中點(diǎn),連接DH與BE相交于點(diǎn)G.
(1)求證:BF=AC;
(2)求證:CE=BF;
(3)CE與BG的大小關(guān)系如何?試證明你的結(jié)論.

【答案】分析:(1)利用ASA判定Rt△DFB≌Rt△DAC,從而得出BF=AC.
(2)利用ASA判定Rt△BEA≌Rt△BEC,得出CE=AE=AC,又因?yàn)锽F=AC所以CE=AC=BF
(3)利用等腰三角形“三線合一”)和勾股定理即可求解.
解答:(1)證明:∵CD⊥AB,∠ABC=45°,
∴△BCD是等腰直角三角形.
∴BD=CD.
∵∠DBF=90°-∠BFD,∠DCA=90°-∠EFC,且∠BFD=∠EFC,
∴∠DBF=∠DCA.
在Rt△DFB和Rt△DAC中,

∴Rt△DFB≌Rt△DAC(ASA).
∴BF=AC;

(2)證明:∵BE平分∠ABC,
∴∠ABE=∠CBE.
在Rt△BEA和Rt△BEC中

∴Rt△BEA≌Rt△BEC(ASA).
∴CE=AE=AC.
又由(1),知BF=AC,
∴CE=AC=BF;

(3)證明:∠ABC=45°,CD垂直AB于D,則CD=BD.
H為BC中點(diǎn),則DH⊥BC(等腰三角形“三線合一”)
連接CG,則BG=CG,∠GCB=∠GBC=∠ABC=×45°=22.5°,∠EGC=45°.
又∵BE垂直AC,故∠EGC=∠ECG=45°,CE=GE.
∵△GEC是直角三角形,
∴CE2+GE2=CG2,
∵DH垂直平分BC,
∴BG=CG,
∴CE2+GE2=CG2=BG2;即2CE2=BG2,BG=CE,
∴BG>CE.
點(diǎn)評(píng):本題考查三角形全等的判定方法,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、HL.在復(fù)雜的圖形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并應(yīng)用此點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2011年江蘇省南通市啟東中學(xué)中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:填空題

(2007•成都)已知x是一元二次方程x2+3x-1=0的實(shí)數(shù)根,那么代數(shù)式的值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(11)(解析版) 題型:解答題

(2007•成都)已知:如圖,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點(diǎn)F,H是BC邊的中點(diǎn),連接DH與BE相交于點(diǎn)G.
(1)求證:BF=AC;
(2)求證:CE=BF;
(3)CE與BG的大小關(guān)系如何?試證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年浙江省杭州市蕭山區(qū)中考模擬數(shù)學(xué)試卷(眾安前進(jìn)初中 吳順良等)(解析版) 題型:解答題

(2007•成都)已知:如圖,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點(diǎn)F,H是BC邊的中點(diǎn),連接DH與BE相交于點(diǎn)G.
(1)求證:BF=AC;
(2)求證:CE=BF;
(3)CE與BG的大小關(guān)系如何?試證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年四川省成都市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2007•成都)已知:+(b+5)2=0,那么a+b的值為   

查看答案和解析>>

同步練習(xí)冊(cè)答案