【題目】某校實施新課程改革以來,學(xué)生的學(xué)習(xí)能力有了很大提高.王老師為進一步了解本班學(xué)生自主學(xué)習(xí)、合作交流的現(xiàn)狀,對該班部分學(xué)生進行調(diào)查,把調(diào)查結(jié)果分為四類(A.特別好,B.好,C.一般,D.較差)后,再將調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計圖(如圖).請根據(jù)統(tǒng)計圖解答下列問題:
(1)本次調(diào)查中,王老師一共調(diào)查了名學(xué)生;
(2)將兩幅統(tǒng)計圖中不完整的部分補充完整;
(3)假定全校各班實施新課程改革效果一樣,全校共有學(xué)生2 400人,請估計該校新課程改革效果達到A類的有多少學(xué)生;
(4)為了共同進步,王老師從被調(diào)查的A類和D類學(xué)生中分別選取一名學(xué)生進行“兵教兵”互助學(xué)習(xí),請用列表或畫樹狀圖的方法求出恰好選中一名男生和一名女生的概率.
【答案】
(1)20
(2)解:如圖所示:
(3)解:2 400×15%=360(人)
(4)解:列表如下:A類中的兩名男生分別記為A1和A2.
男A1 | 男A2 | 女A | |
男D | 男A1男D | 男A2男D | 女A男D |
女D | 男A1女D | 男A2女D | 女A女D |
共有6種等可能的結(jié)果,其中,一男一女的有3種,所以所選兩位同學(xué)恰好是一位男生和一位女生的概率為P= =
【解析】(1)由題意可得由特別好的人數(shù)除以占總?cè)藬?shù)的百分即可得到王老師一共調(diào)查學(xué)生;
(2)由題意可得:C類女生人數(shù);D類男生人數(shù),由(1)(2)繼而可補全條形統(tǒng)計圖;
(3)由樣本中A類所占的百分比,即可估計該校新課程改革效果達到A類的有多少學(xué)生;
(4)首先根據(jù)題意列出表格,再利用表格求得所有等可能的結(jié)果與恰好選中一名男生和一名女生的情況,繼而求得到結(jié)論.
【考點精析】利用扇形統(tǒng)計圖和條形統(tǒng)計圖對題目進行判斷即可得到答案,需要熟知能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況;能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小蘇和小林在如圖所示的跑道上進行4×50米折返跑.在整個過程中,跑步者距起跑線的距離y(單位:m)與跑步時間t(單位:s)的對應(yīng)關(guān)系如下圖所示.下列敘述正確的是( )
A. 兩人從起跑線同時出發(fā),同時到達終點
B. 小蘇跑全程的平均速度大于小林跑全程的平均速度
C. 小蘇前15s跑過的路程大于小林前15s跑過的路程
D. 小林在跑最后100m的過程中,與小蘇相遇2次
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】畫圖并填空:如圖,方格紙中每個小正方形的邊長都為1.在方格紙內(nèi)將△ABC經(jīng)過一次平移后得到△A′B′C′,圖中標(biāo)出了點B的對應(yīng)點B′.
(1)在給定方格紙中畫出平移后的△A′B′C′;
(2)畫出BC邊上的高線AE;
(3)利用網(wǎng)格點和三角板畫圖或計算:△A′B′C′的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖已知直線BC//ED.
(1)若點A在直線DE上,且∠B=44°,∠EAC=30°,求∠BAC的度數(shù);
(2)若點G在BC的延長線上,求證:∠ACG =∠BAC+∠B.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一天早晨,小玲從家出發(fā)勻速步行到學(xué)校,小玲出發(fā)一段時間后,她的媽媽發(fā)現(xiàn)小玲忘帶了一件必需的學(xué)習(xí)用品,于是立即下樓騎自行車,沿小玲行進的路線,勻速去追小玲,媽媽追上小玲將學(xué)習(xí)用品交給小玲后,立即沿原路線勻速返回家里,但由于路上行人漸多,媽媽返回時騎車的速度只是原來速度的一半,小玲繼續(xù)以原速度步行前往學(xué)校,媽媽與小玲之間的距離y(米)與小玲從家出發(fā)后步行的時間x(分)之間的關(guān)系如圖所示(小玲和媽媽上、下樓以及媽媽交學(xué)習(xí)用品給小玲耽擱的時間忽略不計).當(dāng)媽媽剛回到家時,小玲離學(xué)校的距離為_____米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】體育課上,小強和小明進行百米賽跑,小明比小強跑得快,如果兩人同時跑,肯定小明贏,現(xiàn)在小明讓小強先跑若干米后再追趕他,圖中的射線a、b分別表示兩人跑的路程與小明追趕時間之間的關(guān)系,根據(jù)圖象回答下列問題:
小明讓小強先跑出______米,小明才開始跑;
小明和小強賽跑的速度分別為______,______;
求出圖中小強跑步路程s和時間t的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,,,.
為邊BC上一點,將沿直線AP翻折至的位置點B落在點E處
如圖1,當(dāng)點E落在CD邊上時,利用尺規(guī)作圖,在圖1中作出滿足條件的圖形不寫作法,保留作圖痕跡,用2B鉛筆加粗加黑并直接寫出此時______;
如圖2,若點P為BC邊的中點,連接CE,則CE與AP有何位置關(guān)系?請說明理由;
點Q為射線DC上的一個動點,將沿AQ翻折,點D恰好落在直線BQ上的點處,則______;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知正方形ABCD的邊長為1,點E在邊BC上,若∠AEF=90°,且EF交正方形外角的平分線CF于點F.
(1)圖1中若點E是邊BC的中點,我們可以構(gòu)造兩個三角形全等來證明AE=EF,請敘述你的一個構(gòu)造方案,并指出是哪兩個三角形全等(不要求證明);
(2)如圖2,若點E在線段BC上滑動(不與點B,C重合).
①AE=EF是否總成立?請給出證明;
②在如圖2的直角坐標(biāo)系中,當(dāng)點E滑動到某處時,點F恰好落在拋物線y=﹣x2+x+1上,求此時點F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小敏思考解決如下問題:
原題:如圖1,四邊形ABCD中,,點P,Q分別在四邊形ABCD的邊BC,CD上,,求證:.
______;
小敏進行探索,如圖2,將點P,Q的位置特殊化,使,,點E,F分別在邊BC,CD上,此時她證明了請你證明此時結(jié)論;
受以上的啟發(fā),在原題中,添加輔助線:如圖3,作,,垂足分別為E,F,請你繼續(xù)完成原題的證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com