【題目】今年本市蜜桔大豐收,某水果商銷售一種蜜桔,成本價為10元/千克,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不高于18元/千克,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量(千克)與銷售價(元/千克)之間的函數(shù)關(guān)系如圖所示:
(1)求與之間的函數(shù)關(guān)系式;
(2)該經(jīng)銷商想要每天獲得150元的銷售利潤,銷售價應定為多少?
【答案】(1);(2)該經(jīng)銷商想要每天獲得150元的銷售利潤,銷售價應定為15元.
【解析】
(1)觀察函數(shù)圖象找出點的坐標,再利用待定系數(shù)法即可求出y與x之間的函數(shù)關(guān)系式;
(2)根據(jù)總利潤=每千克的銷售利潤×銷售數(shù)量,即可得出關(guān)于x的一元二次方程,解之取符合題意值即可得出結(jié)論.
(1)設(shè)與之間的函數(shù)關(guān)系式,
把,代入得:,解得:,
∴與之間的函數(shù)關(guān)系式;
(2)根據(jù)題意得:,
整理得:,
解得:,(不合題意,舍去).
答:該經(jīng)銷商想要每天獲得150元的銷售利潤,銷售價應定為15元.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知矩形ABCD,⊙O是△ABC的內(nèi)切圓,現(xiàn)將矩形ABCD按如圖所示折疊,使點D與點O重合,折痕為FG,點F、G分別在AD,BC上,連接OG、DG,若OG⊥DG,且⊙O的半徑長為1,則下列結(jié)論不成立的是
A.CD+DF=4B.CDDF=23
C.BC+AB=2+4D.BCAB=2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=45°,它的外接圓的圓心O在其內(nèi)部,連結(jié)OC,過點A作AD∥OC,交BC的延長線于點D.
(1)求證:AD是⊙O的切線;
(2)若∠BAD=105°,⊙O的半徑為2,求劣弧AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC和△ADE是兩個不全等的等腰直角三角形,其中點B與點D是直角頂點,現(xiàn)固定△ABC,而將△ADE繞點A在平面內(nèi)旋轉(zhuǎn).
(1)如圖1,當點D在CA延長線上時,點M為EC的中點,求證:△DMB是等腰三角形.
(2)如圖2,當點E在CA延長線上時,M是EC上一點,若△DMB是等腰直角三角形,∠DMB為直角,求證:點M是EC的中點.
(3)如圖3,當△ADE繞點A旋轉(zhuǎn)任意角度時,線段EC上是否都存在點M,使△BMD為等腰直角三角形,若不存在,請舉出反例;若存在,請予以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料,然后解答問題.
經(jīng)過正四邊形(即正方形)各頂點的圓叫做這個正四邊形的外接圓,圓心是正四邊形的對稱中心,這個正四邊形叫做這個圓的內(nèi)接正四邊形.
如圖,正方形ABCD內(nèi)接于⊙O,⊙O的面積為S1,正方形ABCD的面積為S2.以圓心O為頂點作∠MON,使∠MON=90°.將∠MON繞點O旋轉(zhuǎn),OM、ON分別與⊙O交于點E、F,分別與正方形ABCD的邊交于點G、H.設(shè)由OE、OF、及正方形ABCD的邊圍成的圖形(陰影部分)的面積為S.
(1)當OM經(jīng)過點A時(如圖①),則S、S1、S2之間的關(guān)系為: (用含S1、S2的代數(shù)式表示);
(2)當OM⊥AB于G時(如圖②),則(1)中的結(jié)論仍然成立嗎?請說明理由;
(3)當∠MON旋轉(zhuǎn)到任意位置時(如圖③),則(1)中的結(jié)論任然成立嗎:請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是甲、乙兩射擊運動員10次射擊成績的折線統(tǒng)計圖,那么根據(jù)圖中的信息估計,擊中10環(huán)可能性更大的是__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2﹣4ax+3a交x軸于A、B兩點(點A在點B左側(cè)),且拋物線頂點的縱坐標為﹣1.
(1)求拋物線的解析式;
(2)若P是拋物線上一點,過點P作PQ⊥x軸交直線l1:y=x+t于點Q.若恰好存在三個點P使得PQ=,求證:直線l1過點A;
(3)在(2)的結(jié)論下,直線l1與拋物線的另一個交點為D,直線l2:y=kx+c(﹣4<k<﹣1)經(jīng)過點A,過線段AD上一點E(異于點A、D)作x軸的垂線,分別與直l2、拋物線交于點F、G.連接GD,作FH∥GD交直線l1于點H,求EH長的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義一種對正整數(shù)n的“F運算”:①當n為奇數(shù)時,結(jié)果為3n+5;②當n為偶數(shù)時,結(jié)果為(其中k是使為奇數(shù)的最小正整數(shù)),并且運算重復進行.例如:取n=26,則運算過程如圖:
那么當n=9時,第2019次“F運算”的結(jié)果是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線和反比例函數(shù)的圖象都經(jīng)過點,點在反比例函數(shù)的圖象上,連接.
(1)求直線和反比例函數(shù)的解析式;
(2)直線經(jīng)過點嗎?請說明理由;
(3)當直線與反比例數(shù)圖象的交點在兩點之間.且將分成的兩個三角形面積之比為時,請直接寫出的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com