【題目】如圖,在菱形ABCD中,AE⊥BCE,將△ABE沿AE所在直線翻折得△AEF,若AB=2,∠B=45°,則△AEF與菱形ABCD重疊部分(陰影部分)的面積為( ).

A. 2 B. C. D.

【答案】D

【解析】

在邊長為2的菱形ABCD中,∠B=45°,AEBC邊上的高,可求得AE的長,求得ABF、AEF、CGF的面積,計算即可.

∵在邊長為2的菱形ABCD中,∠B=45°,AEBC邊上的高,

AE=

由折疊的性質(zhì)可知,ABF為等腰直角三角形,

SABF=ABAF=2,SABE=1,

CF=BF-BC=2-2,

ABCD,

∴∠GCF=B=45°,

又由折疊的性質(zhì)知,∠F=B=45°,

CG=GF=2-

SCGF=GCGF=3-2,

∴重疊部分的面積為:2-1-(3-2)=2-2,

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AB⊥AC,AB=1,BC= .對角線AC,BD相交于點(diǎn)O,將直線AC繞點(diǎn)O順時針旋轉(zhuǎn),分別交BC,AD于點(diǎn)E,F(xiàn).

(1)證明:當(dāng)旋轉(zhuǎn)角為90°時,四邊形ABEF是平行四邊形;

(2)試說明在旋轉(zhuǎn)過程中,線段AF與EC總保持相等;

(3)在旋轉(zhuǎn)過程中,四邊形BEDF可能是菱形嗎?如果不能,請說明理由;如果能,說明理由并求出此時AC繞點(diǎn)O順時針旋轉(zhuǎn)的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,、分別是的平分線,,交,,交,,,,結(jié)論①;②;③;④.其中正確的有(

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近年來,共享單車服務(wù)的推出(如圖1),極大的方便了城市公民綠色出行,圖2是某品牌某型號單車的車架新投放時的示意圖(車輪半徑約為30cm),其中BC∥直線l,BCE=71°,CE=54cm.

(1)求單車車座E到地面的高度;(結(jié)果精確到1cm)

(2)根據(jù)經(jīng)驗(yàn),當(dāng)車座ECB的距離調(diào)整至等于人體胯高(腿長)的0.85時,坐騎比較舒適.小明的胯高為70cm,現(xiàn)將車座E調(diào)整至座椅舒適高度位置E′,求EE′的長.(結(jié)果精確到0.1cm)

(參考數(shù)據(jù):sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)已知,是平面上的任意一點(diǎn),過點(diǎn),,垂足分別為點(diǎn)、,求的度數(shù).

2)探究有什么關(guān)系?(直接寫出結(jié)論)

3)通過上面這兩道題,你能說出如果一個角的兩邊分別垂直于另一個角的兩邊,則這兩個角是什么關(guān)系嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】幾何模型:

條件:如圖1,A、B是直線同旁的兩個定點(diǎn).

問題:在直線上確定一點(diǎn)P,使PA+PB的值最小.

方法:作點(diǎn)A關(guān)于直線的對稱點(diǎn)A′,連接A′B于點(diǎn)P,則PA+PB=A′B的值最小(不必證明).

模型應(yīng)用:

(1)如圖2,已知平面直角坐標(biāo)系中兩定點(diǎn)A(0,-1),B(2,-1),Px軸上一動點(diǎn), 則當(dāng)PA+PB的值最小時,點(diǎn)P的橫坐標(biāo)是______,此時PA+PB的最小值是______;

(2)如圖3,正方形ABCD的邊長為2,EAB的中點(diǎn),PAC上一動點(diǎn).由正方形對稱性可知,BD關(guān)于直線AC對稱,連接BD,則PB+PE的最小值是______;

(3)如圖4,正方形ABCD的面積為12,△ABE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),在對角線AC上有一動點(diǎn)P,則PD+PE的最小值為

(4)如圖5,在菱形ABCD中,AB=8,∠B=60°,點(diǎn)G是邊CD邊的中點(diǎn),點(diǎn)E、F分別是AG、AD上的兩個動點(diǎn),則EF+ED的最小值是_______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,點(diǎn)E,F(xiàn)分別在BC,CD上, ΔAEF是等邊三角形,連接AC交EF于點(diǎn)G,下列結(jié)論:①CE=CF,②∠AEB=75°,③AG=2GC,④BE+DF=EF,⑤S△CEF=2S△ABE,其中結(jié)論正確的個數(shù)為( )

A. 2個 B. 3個 C. 4個 D. 5個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AC,BD交于點(diǎn)O,且AC=12cm,BD=16cm.點(diǎn)P從點(diǎn)B出發(fā),沿BA方向勻速運(yùn)動,速度為lcm/s;同時,直線EF從點(diǎn)D出發(fā),沿DB方向勻速運(yùn)動,速度為lcm/s,EFBD,且與AD,BD,CD分別交于點(diǎn)E,Q.F,當(dāng)直線EF停止運(yùn)動時,點(diǎn)P也停止運(yùn)動.連接PF,設(shè)運(yùn)動時間為t(s)(0<t<8).解答下列問題:

(1)求菱形ABCD的面積;

(2)當(dāng)t=1時,求QF長;

(3)是否存在某一時刻t,使四邊形APFD是平行四邊形?若存在,求出t值,若不存在,請說明理由;

(4)設(shè)DEF的面積為s(cm2),試用含t的代數(shù)式表示S,并求t為何值時,DEF的面積與BPC的面積相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】頂點(diǎn)都在格點(diǎn)上的的三角形叫做格點(diǎn)三角形,如圖,在的方格紙中,是格點(diǎn)三角形.

1)在圖中,以點(diǎn)為對稱中心,作出一個與成中心對稱的格點(diǎn)三角形,并在題后橫線上直接寫出的位置關(guān)系:

2)在圖中,以所在的直線為對稱軸,作出一個與成軸對稱的格點(diǎn)三角形,并在題后橫線上直接寫出是什么形狀的特殊三角形:

查看答案和解析>>

同步練習(xí)冊答案