【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A、B兩點,與y軸交于點C,已知點A(﹣1,0),點C(0,2)
(1)求拋物線的函數(shù)解析式;
(2)若D是拋物線位于第一象限上的動點,求△BCD面積的最大值及此時點D的坐標(biāo).
【答案】(1) 拋物線的函數(shù)解析式為y=﹣x2+x+2;(2)4;D(2,3).
【解析】
(1)把A與C坐標(biāo)代入拋物線解析式求出b與c的值,確定出解析式即可;
(2)連接OD,設(shè)出D坐標(biāo),四邊形OCDB的面積等于三角形OCD面積+三角形OBD面積,表示出三角形BCD面積S與m的二次函數(shù)解析式,求出最大面積及D坐標(biāo)即可.
(1)將點A(﹣1,0),點C(0,2)縱、橫坐標(biāo)分別代入y=﹣x2+bx+c得:
,
解得:,
則拋物線的函數(shù)解析式為y=﹣x2+x+2;
(2)連接OD,則有B(4,0),設(shè)D(m,﹣m2+m+2),
∵S四邊形OCDB﹣S△OCD﹣S△OBD=×2m+×4(﹣m2+m+2)=﹣m2+4m+4,
∴S△BCD=S四邊形OCDB﹣S△OBC=﹣m2+4m+4﹣×4×2=﹣m2+4m=﹣(m﹣2)2+4,
當(dāng)m=2時,S△BCD取得最大值4,
此時yD=﹣×4+×2+2=3,即D(2,3).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC,點D是BC的中點,點E在AD上.
(1)求證:BE=CE;
(2)如圖2,若BE的延長線交AC于點F,且BF⊥AC,∠BAC=45°,原題設(shè)其他條件不變.求證:AB=BF+EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=6cm,BC=8cm.點P從A點出發(fā)沿A→C→B路徑向終點運動,終點為B點;點Q從B點出發(fā)沿B→C→A路徑向終點運動,終點為A點.點P和Q分別以每秒1cm和3cm的運動速度同時開始運動,當(dāng)一個點到達終點時另一個點也停止運動,在某時刻,分別過P和Q作PE⊥l于E,QF⊥l于F.設(shè)運動時間為t秒,則當(dāng)t=______秒時,△PEC與△QFC全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四幅圖象分別表示變量之間的關(guān)系,請按圖象的順序,將下面的四種情境與之對應(yīng)排序.正確的順序是( 。
①籃球運動員投籃時,投出去的籃球的高度與時間的關(guān)系
②去超市購買同一單價的水果,所付費用與水果數(shù)量的關(guān)系
③李老師使用的是一種含月租的手機計費方式,則他每月所付話費與通話時間的關(guān)系
④周末,小明從家到圖書館,看了一段時間書后,按原速度原路返回,小明離家的距離與時間的關(guān)系
A. ①②③④ B. ①③④② C. ①③②④ D. ①④②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對x,y定義一種新運算F,規(guī)定:F(x,y)=(mx+ny)(3x﹣y)(其中m,n均為非零常數(shù)).例如:F(1,1)=2m+2n,F(xiàn)(﹣1,0)=3m.
(1)已知F(1,﹣1)=﹣8,F(xiàn)(1,2)=13.
①求m,n的值;
②關(guān)于a的不等式組,求a的取值范圍;
(2)當(dāng)x2≠y2時,F(x,y)=F(y,x)對任意有理數(shù)x,y都成立,請直接寫出m,n滿足的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC的邊AB,AC的外側(cè)分別作等邊△ABD和等邊△ACE,連接DC,BE.
(1)求證:DC=BE;
(2)若BD=3,BC=4, BD⊥BC于點B,請求出△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,二次函數(shù)y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(點A在點B的右側(cè)),與y軸的正半軸交于點C,頂點為D.
(1)求頂點D的坐標(biāo)(用含a的代數(shù)式表示);
(2)若以AD為直徑的圓經(jīng)過點C.
①求拋物線的函數(shù)關(guān)系式;
②如圖2,點E是y軸負(fù)半軸上一點,連接BE,將△OBE繞平面內(nèi)某一點旋轉(zhuǎn)180°,得到△PMN(點P、M、N分別和點O、B、E對應(yīng)),并且點M、N都在拋物線上,作MF⊥x軸于點F,若線段MF:BF=1:2,求點M、N的坐標(biāo);
③點Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點,并且和直線CD相切,如圖3,求點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一段拋物線:y=﹣x(x﹣3)(0≤x≤3),記為C1,它與x軸交于點O,A1;將C1繞點A1旋轉(zhuǎn)180°得C2,交x軸于點A2;將C2繞點A2旋轉(zhuǎn)180°得C3,交x軸于點A3;…如此進行下去,直至得C17.
(1)寫出點的坐標(biāo)________
(2)若P(50,m)在第17段拋物線C17上,則m=_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com