【題目】解不等式(組),并要求把解集在數(shù)軸上表示出來.

(1)

(2)

【答案】1,在數(shù)軸上表示見解析;(2,在數(shù)軸上表示見解析

【解析】

1)利用不等式的基本性質(zhì),將不等式的兩邊同乘2,然后移項、合并同類項、系數(shù)化為1,求出不等式的解集,再在數(shù)軸上表示出來即可;

2)根據(jù)不等式的基本性質(zhì)來解不等式組,兩個不等式的解集的公共部分,就是該不等式組的解集;然后根據(jù)不等式解集在數(shù)軸上的表示方法即可把解集在數(shù)軸上表示出來.

解:(1)去分母,得,

移項,

合并同類項,得,

系數(shù)化為1,得,

這個不等式的解集在數(shù)軸上的表示如下圖所示:

;

2

解不等式①,得,

解不等式②,得,

所以原不等式組的解集是:,

這個不等式組的解集在數(shù)軸上的表示如下圖所示:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的對角線相交于點0,AC2,BD.將菱形按如圖方式折疊,使點B與點O重合,折痕為EF,則五邊形AEFCD的面積是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】河大附中初一年級有350名同學(xué)去春游,已知2A型車和1B型車可以載學(xué)生100人;1A型車和2B型車可以載學(xué)生110人.

1AB型車每輛可分別載學(xué)生多少人?

2)若租一輛A需要100元,一輛B120元,請你設(shè)計租車方案,使得恰好運送完學(xué)生并且租車費用最少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,Am,0),Bn,0),C(﹣12),且滿足式|m+2|+m+n220

1)求出m,n的值.

2)①在x軸的正半軸上存在一點M,使COM的面積等于ABC的面積的一半,求出點M的坐標(biāo);

②在坐標(biāo)軸的其它位置是否存在點M,使COM的面積等于ABC的面積的一半仍然成立,若存在,請直接在所給的橫線上寫出符合條件的點M的坐標(biāo);

3)如圖2,過點CCDy軸交y軸于點D,點P為線段CD延長線上一動點,連接OP,OE平分∠AOP,OFOE,當(dāng)點P運動時,的值是否會改變?若不變,求其值;若改變,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC是等邊三角形,點D是射線BC上的一個動點(D不與點B,C重合),△ADE是以AD為邊的等邊三角形,過點EBC的平行線,交射線AC于點G,連接BE

1)如圖1所示,當(dāng)點D在線段BC上時,求證:四邊形BCGE是平行四邊形;

2)如圖2所示,當(dāng)點DBC的延長線上時,(1)中的結(jié)論是否成立?并請說明理由;

3)當(dāng)點D運動到什么位置時,四邊形BCGE是菱形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形網(wǎng)格中,每個小正方形的邊長均為1個單位長度,△ABC三個頂點的位置如圖所示,現(xiàn)將△ABC平移,使點A移動到點A',點BC的對應(yīng)點分別是點B'、C'.

1)△ABC的面積是   ;

2)畫出平移后的△A'B'C';

3)若連接AA'、CC′,這兩條線段的關(guān)系是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】撫順某中學(xué)為了解八年級學(xué)生的體能狀況,從八年級學(xué)生中隨機抽取部分學(xué)生進(jìn)行體能測試,測試結(jié)果分為A,B,C,D四個等級.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:

(1)本次抽樣調(diào)查共抽取了多少名學(xué)生?
(2)求測試結(jié)果為C等級的學(xué)生數(shù),并補全條形圖;
(3)若該中學(xué)八年級共有700名學(xué)生,請你估計該中學(xué)八年級學(xué)生中體能測試結(jié)果為D等級的學(xué)生有多少名?
(4)若從體能為A等級的2名男生2名女生中隨機的抽取2名學(xué)生,做為該校培養(yǎng)運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù) 分別交y軸、x軸于A、B兩點,拋物線y=﹣x2+bx+c過A、B兩點.

(1)求這個拋物線的解析式;
(2)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個拋物線于N.求當(dāng)t取何值時,MN有最大值?最大值是多少?
(3)在(2)的情況下,以A、M、N、D為頂點作平行四邊形,求第四個頂點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,已知點E在AB上,點F在CD上,且AE=CF.
求證:DE=BF.

查看答案和解析>>

同步練習(xí)冊答案