【題目】某制筆企業(yè)欲將200件產(chǎn)品運往,三地銷售,要求運往地的件數(shù)是運往地件數(shù)的2倍,各地的運費如圖所示.設(shè)安排件產(chǎn)品運往地.

產(chǎn)品件數(shù)(件)

運費(元)

1)①根據(jù)信息補全上表空格.②若設(shè)總運費為元,寫出關(guān)于的函數(shù)關(guān)系式及自變量的取值范圍.

2)若運往地的產(chǎn)品數(shù)量不超過運往地的數(shù)量,應(yīng)怎樣安排,三地的運送數(shù)量才能達(dá)到運費最少.

【答案】1)①見解析;②,;(2)安排運往,,三地的產(chǎn)品件數(shù)分別為40件、80件,80件時,運費最少.

【解析】

1)①根據(jù)運往B地的產(chǎn)品件數(shù)=總件數(shù)-運往A地的產(chǎn)品件數(shù)-運往B地的產(chǎn)品件數(shù);運費=相應(yīng)件數(shù)×一件產(chǎn)品的運費,即可補全圖表;
②根據(jù)題意列出函數(shù)解析式即可;
2)根據(jù)運往B地的件數(shù)不多于運往C地的件數(shù),列出不等式,利用一次函數(shù)的性質(zhì)解答即可;

解:(1)①根據(jù)信息填表

產(chǎn)品件數(shù)(件)

運費(元)

②由題意列式是整數(shù))(取值范圍1分,沒寫是整數(shù)不扣分)

2)若運往地的產(chǎn)品數(shù)量不超過運往地的數(shù)量則:,解得

,

,

的增大而增大,

∴當(dāng)時,最小,.

此時.

所以安排運往,,三地的產(chǎn)品件數(shù)分別為40件、80件,80件時,運費最少.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上,點A表示1,現(xiàn)將點A沿數(shù)軸做如下移動:第一次將點A向左移動3個單位長度到達(dá)點A1,第二次將點A向右移動6個單位長度到達(dá)點A2,第三次將點A2向左移動9個單位長度到達(dá)點A3,按照這種移動規(guī)律移動下去,第n次移動到點An,如果點An與原點的距離不小于20,那么n的最小值是(  )

A. 12B. 13C. 14D. 15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩家綠化養(yǎng)護(hù)公司各自推出了校園綠化養(yǎng)護(hù)服務(wù)的收費方案.

甲公司方案:每月的養(yǎng)護(hù)費用y(元)與綠化面積x(平方米)的關(guān)系如圖所示.

乙公司方案:綠化面積不超過1000平方米時,每月收取費用5500元;綠化面積超過1000平方米時,超過的部分每月每平方米加收4元.

(1)求如圖所示的yx的函數(shù)表達(dá)式;

(2)如果某學(xué)校目前的綠化面積是1200平方米.那么選擇哪家公司的服務(wù)比較劃算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】AOB與∠COD有共同的頂點O,其中∠AOB=COD=60°.

(1)如圖①,試判斷∠AOC與∠BOD的大小關(guān)系,并說明理由;

(2)如圖①,若∠BOC=10°,求∠AOD的度數(shù);

(3)如圖①,猜想∠AOD與∠BOC的數(shù)量關(guān)系,并說明理由;

(4)若改變∠AOB,COD的位置,如圖②,則(3)的結(jié)論還成立嗎?若成立請證明;若不成立,請直接寫出你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】公園門票價格規(guī)定如下:

某校七年級(1)(2)兩個班共104人去游園,其中(1)班有40多人,且不足50人,經(jīng)估算,如果兩個班都以班為單位進(jìn)行購票,則一共應(yīng)付1240元,問:

1)兩個班各有多少個學(xué)生?

2)如果兩班聯(lián)合起來,作為一個團(tuán)體票能省多少錢?如果七(1)班單獨組織去游園,作為組織者的你如何購票才最省錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知O是直線AB上一點,∠AOC45°36’,OD平分∠BOC,求∠AOD的度數(shù).完成下列推理過程:

解:由題意可知,∠AOB是平角,

AOB   +BOC

因為∠AOC45°36′

所以∠BOC   °   

又因為OD平分∠BOC

∴∠CODBOC   °   

∴∠AOD=∠   +      °   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某中學(xué)準(zhǔn)備在校園里利用院墻的一段再圍三面籬笆,形成一個矩形花園(院墻米),現(xiàn)有米長的籬笆.

1)請你設(shè)計一種圍法(籬笆必須用完),使矩形花園的面積為.

2)如何設(shè)計可以使得圍成的矩形面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,延長線段ABC使BC=2AB,延長線段BAD使AD=3AB,點E是線段DB的中點,點F是線段AC的中點,若EF=10cm,求AB、CD的長度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD=BF,∠ACD=90°,AE平分∠BAC,BF⊥AE,交AC的延長線于F,且垂足為E,則下列結(jié)論:①AD=2BF; ②BF=AF;③AC+CD=AB;④AB=BF;⑤AD=2BE.其中正確的結(jié)論有( )

A. 1個B. 2個C. 3個D. 4個

查看答案和解析>>

同步練習(xí)冊答案