【題目】如圖,已知點是反比例函數(shù)在第一象限圖像上的一個動點,連接,以 為長,為寬作矩形,且點在第四象限,隨著點的運動,點也隨之運動,但點始終在反比例函數(shù)的圖像上,則的值為(

A. B. C. D.

【答案】A

【解析】 設(shè)A(a,b),則ab=,分別過A,CAE⊥x軸于E,CF⊥x軸于F,根據(jù)相似三角形的判定證得△AOE∽△COF,由相似三角形的性質(zhì)得到OF=b,CF=b,則k=-OFCF.

設(shè)A(a,b),
∴OE=a,AE=b,
∵在反比例函數(shù)y=的圖象上,
∴ab=,
分別過A,CAE⊥x軸于E,CF⊥x軸于F,
∵四邊形AOCB是矩形,
∴∠AOE+∠COF=90°,
∴∠OAE=∠COF=90°-∠AOE,
∴△AOE∽△OCF,
∵OC=OA,
=
∴OF=AE=b,CF=OE=a,
∵C在反比例函數(shù)y=的圖象上,且點C在第四象限,
∴k=-OFCF=-ba=-3ab=-3,
故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車從A城出發(fā)沿相同的路線勻速行駛至B城.在整個行駛過程中,甲、乙兩車離開A城的距離y(千米)與甲車行駛的時間t(小時)之間的函數(shù)關(guān)系如圖所示,則下列結(jié)論:①A、B兩城相距300千米;②乙車比甲車晚出發(fā)1小時,卻早到1小時;③乙車出發(fā)后2.5小時追上甲車;④當(dāng)甲、乙兩車相距50千米時,t.其中正確的是________(填序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC,AB=AC,A=36°,DE垂直平分ABACD,ABE,下列論述錯誤的是( )

A. BD平分ABC B. DAC的中點

C. AD=BD=BC D. BDC的周長等于AB+BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形紙片ABCD的邊長為3,點E、F分別在邊BC、CD上,將AB、AD分別沿AE、AF折疊,點B,D恰好都落在點G處,已知BE=1,則EF的長為(
A.1.5
B.2.5
C.2.25
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一些相同的房間需要粉刷墻面,一天3名師傅去粉刷8個房間,結(jié)果其中有40㎡墻面未來得及刷;同樣時間內(nèi)5名徒弟粉刷了9個房間的墻面,每名師傅比徒弟一天多刷30㎡墻面.

(1)求每個房間需要粉刷的墻面面積;

(2)張老板現(xiàn)有36個這樣的房間需要粉刷,若請1名師傅帶2名徒弟去,需幾天完成?

(3)已知每名師傅、徒弟每天的工資分別是85元、65元,張老板要求在3天內(nèi)(包括3天)完成36個房間的粉刷,問如何在這8人中雇用人員(不一定8人全部雇用),才合算呢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為直線AB上一點,OD平分∠AOC,DOE=90°.

(1)請你數(shù)一數(shù),圖中有 個小于平角的角;

(2)若∠AOC=50°,則∠COE的度數(shù)= ,BOE的度數(shù)= ;

(3)猜想:OE是否平分∠BOC?請通過計算說明你猜想的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一應(yīng)用題:“李老師存了一個兩年的定期儲蓄5000元,到期后扣除20%的利息稅能取5176元,求這種儲蓄的年利率是多少?”四位同學(xué)都是設(shè)這種儲蓄的年利率是x,可他們列出的方程卻不同,下列列出的方程中正確的是(

A. 5000(1+x×2×20%)=5176 B. 5000(1+2x)×80%=5176

C. 5000+5000x×2×80%=5176 D. 5000+5000x×80%=5176

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C,P是 上兩點,AB=13,AC=5.
(1)如圖(1),若點P是 的中點,求PA的長;
(2)如圖(2),若點P是 的中點,求PA的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的直徑為AB,點C在圓周上(異于A,B),AD⊥CD.
(1)若BC=3,AB=5,求AC的值;
(2)若AC是∠DAB的平分線,求證:直線CD是⊙O的切線.

查看答案和解析>>

同步練習(xí)冊答案