【題目】如圖,矩形ABCD中,AB3,BC4,點EA邊上一點,且AE,點F是邊BC上的任意一點,把BEF沿EF翻折,點B的對應(yīng)點為G,連接AG,CG,則四邊形AGCD的面積的最小值為_____

【答案】

【解析】

根據(jù)矩形ABCD中,AB3,BC4,可得AC5,由AE可得點F是邊BC上的任意位置時,點C始終在AC的下方,設(shè)點GAC的距離為h,要使四邊形AGCD的面積的最小,即h最。渣cG在以點E為圓心,BE為半徑的圓上,且在矩形ABCD的內(nèi)部.過點EEHAC,交圓E于點G,此時h最小.根據(jù)銳角三角函數(shù)先求得h的值,再分別求得三角形ACD和三角形ACG的面積即可得結(jié)論.

解:如圖,連接AC,

在矩形ABCD中,AB3BC4,

B=∠D90°

AC5,

AB3,AE

∴點F是邊BC上的任意位置時,點G始終在AC的下方,

設(shè)點GAC的距離為h,

S四邊形AGCDSACD+SACG

3×4+×5h

6+h

要使四邊形AGCD的面積的最小,即h最小.

∵點G在以點E為圓心,BE為半徑的圓上,且在矩形ABCD的內(nèi)部.

過點EEHAC,交圓E于點G,此時h最。

RtABC中,sinBAC

RtAEH中,AE,

sinBAC,

解得EHAE,

EGBEABAE3

hEHEG﹣(3)=3

S四邊形AGCD6+×3

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的口袋中裝有4個完全相同的小球,分別標(biāo)有數(shù)字1、2、34,另有一個可以自由旋轉(zhuǎn)的圓盤.被分成面積相等的3個扇形區(qū),分別標(biāo)有數(shù)字1、2、3(如圖所示).小穎和小亮想通過游戲來決定誰代表學(xué)校參加歌詠比賽,游戲規(guī)則為:一人從口袋中摸出一個小球,另一個人轉(zhuǎn)動圓盤,如果所摸球上的數(shù)字與圓盤上轉(zhuǎn)出數(shù)字之和小于4,那么小穎去;否則小亮去.

1)用樹狀圖或列表法求出小穎參加比賽的概率;

2)你認為該游戲公平嗎?請說明理由;若不公平,請修改該游戲規(guī)則,使游戲公平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于兩點(點在點的左側(cè)),交軸于點,將直線以點為旋轉(zhuǎn)中心,順時針旋轉(zhuǎn),交軸于點,交拋物線于另一點.直線的解析式為:

是第一象限內(nèi)拋物線上一點,當(dāng)的面積最大時,在線段上找一點(不與重合),使的值最小,求出點的坐標(biāo),并直接寫出的最小值;

如圖,將沿射線方向以每秒個單位的速度平移,記平移后的,平移時間為秒,當(dāng)為等腰三角形時,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,任意一個正整數(shù)n都可以進行這樣的分解:n=p×qpq是正整數(shù),且pq),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對值最小,我們就稱p×qn的最佳分解,并規(guī)定:Fn=.例如:12可以分解成1×12,2×63×4,因為1216243,所以3×412的最佳分解,所以F12=.如果一個兩位正整數(shù)t,t=10x+y1xy9,xy為自然數(shù)),交換其個位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為36,那么我們稱這個數(shù)t吉祥數(shù).根據(jù)以上新定義,下列說法正確的有:(1F48=;(2)如果一個正整數(shù)m是另外一個正整數(shù)n的平方,我們稱正整數(shù)m是完全平方數(shù),則對任意一個完全平方數(shù)m,總有Fm=1;(31526吉祥數(shù);(4吉祥數(shù)中,Ft)的最大值為 ( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形ABCD中,ADBC,AEBC于點E,ADC的平分線交AE于點O,以點O為圓心,OA為半徑的圓經(jīng)過點B,交BC于另一點F.

(1)求證:CD與⊙O相切;

(2)BF24,OE5,求tanABC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線ABx軸,y軸,交于A、B兩點,點CBO的中點且

(1)求直線AC的解析式;

(2)若點M是直線AC的一點,當(dāng)時,求點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知拋物線Gyax22ax+4a0).

1)當(dāng)a1時,

①拋物線G的對稱軸為x   ;

②若在拋物線G上有兩點(2,y1),(m,y2),且y2y1,則m的取值范圍是   ;

2)拋物線G的對稱軸與x軸交于點M,點M與點A關(guān)于y軸對稱,將點M向右平移3個單位得到點B,若拋物線G與線段AB恰有一個公共點,結(jié)合圖象,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)北京市統(tǒng)計局發(fā)布的統(tǒng)計數(shù)據(jù)顯示,北京市近五年國民生產(chǎn)總值數(shù)據(jù)如圖1所示,2017年國民生產(chǎn)總值中第一產(chǎn)業(yè)、第二產(chǎn)業(yè)、第三產(chǎn)業(yè)所占比例如圖2所示,根據(jù)以上信息,下列判斷錯誤的是(

A.2013年至2017年北京市國民生產(chǎn)總值逐年增加

B.2017年第二產(chǎn)業(yè)生產(chǎn)總值為5 320億元

C.2017年比2016年的國民生產(chǎn)總值增加了10%

D.若從2018年開始,每一年的國民生產(chǎn)總值比前一年均增長10%,到2019年的國民生產(chǎn)總值將達到33 880億元

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】發(fā)現(xiàn)來源于探究.小亮進行數(shù)學(xué)探究活動,作邊長為a的正方形ABCD和邊長為b的正方形AEFGa>b),開始時,點EAB上,如圖1.將正方形AEFG繞點A逆時針方向旋轉(zhuǎn).

1)如圖2,小亮將正方形AEFG繞點A逆時針方向旋轉(zhuǎn),連接BE、DG,當(dāng)點G恰好落在線段BE上時,小亮發(fā)現(xiàn)DGBE,請你幫他說明理由.當(dāng)a=3,b=2時,請你幫他求此時DG的長.

2)如圖3,小亮旋轉(zhuǎn)正方形AEFG,點EDA的延長線上,連接BF、DF.當(dāng)FG平分∠BFD時,請你幫他求ab及∠FBG的度數(shù).

3)如圖4,BE的延長線與直線DG相交于點P,a=2b.當(dāng)正方形AEFG繞點A從圖1開始,逆時針方向旋轉(zhuǎn)一周時,請你幫小亮求點P運動的路線長(用含b的代數(shù)式表示).

查看答案和解析>>

同步練習(xí)冊答案