如圖,在正方形ABCD中,AB=3 cm,動(dòng)點(diǎn)M自A點(diǎn)出發(fā)沿AB方向以每秒1 cm的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N自A點(diǎn)出發(fā)沿折線AD-DC-CB以每秒3 cm的速度運(yùn)動(dòng),到達(dá)B點(diǎn)時(shí)運(yùn)動(dòng)同時(shí)停止.設(shè)△AMN的面積為y(cm2).運(yùn)動(dòng)時(shí)間為x(秒),則下列圖象中能大致反映y與x之間函數(shù)關(guān)系的是

[  ]

A.

B.

C.

D.

答案:B
解析:

  分析:當(dāng)點(diǎn)N在AD上時(shí),易得S△AMN的關(guān)系式;當(dāng)點(diǎn)N在CD上時(shí),高不變,但底邊在增大,所以S△AMN的面積關(guān)系式為一個(gè)一次函數(shù);當(dāng)N在BC上時(shí),表示出S△AMN的關(guān)系式,根據(jù)開(kāi)口方向判斷出相應(yīng)的圖象即可.

  解答:解:當(dāng)點(diǎn)N在AD上時(shí),即0≤x≤1,S△AMN×x×3x=x2

  點(diǎn)N在CD上時(shí),即1≤x≤2,S△AMN×x×3=x,y隨x的增大而增大,所以排除C、D;

  當(dāng)N在BC上時(shí),即2≤x≤3,S△AMN×x×(9-3x)=-x2,開(kāi)口方向向下.

  點(diǎn)評(píng):考查動(dòng)點(diǎn)問(wèn)題的函數(shù)圖象問(wèn)題;根據(jù)自變量不同的取值范圍得到相應(yīng)的函數(shù)關(guān)系式是解決本題的關(guān)鍵.


提示:

動(dòng)點(diǎn)問(wèn)題的函數(shù)圖象.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖:在正方形網(wǎng)格上有△ABC,△DEF,說(shuō)明這兩個(gè)三角形相似,并求出它們的相似比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點(diǎn)D,過(guò)點(diǎn)D作⊙O的切線精英家教網(wǎng),交BC于點(diǎn)E.
(1)求證:點(diǎn)E是邊BC的中點(diǎn);
(2)若EC=3,BD=2
6
,求⊙O的直徑AC的長(zhǎng)度;
(3)若以點(diǎn)O,D,E,C為頂點(diǎn)的四邊形是正方形,試判斷△ABC的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖,在Rt△ABC中,∠BAC=90°,AD=CD,點(diǎn)E是邊AC的中點(diǎn),連接DE,DE的延長(zhǎng)線與邊BC相交于點(diǎn)F,AG∥BC,交DE于點(diǎn)G,連接AF、CG.
(1)求證:AF=BF;
(2)如果AB=AC,求證:四邊形AFCG是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•陜西)如圖,正三角形ABC的邊長(zhǎng)為3+
3

(1)如圖①,正方形EFPN的頂點(diǎn)E、F在邊AB上,頂點(diǎn)N在邊AC上,在正三角形ABC及其內(nèi)部,以點(diǎn)A為位似中心,作正方形EFPN的位似正方形E′F′P′N(xiāo)′,且使正方形E′F′P′N(xiāo)′的面積最大(不要求寫(xiě)作法);
(2)求(1)中作出的正方形E′F′P′N(xiāo)′的邊長(zhǎng);
(3)如圖②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在邊AB上,點(diǎn)P、N分別在邊CB、CA上,求這兩個(gè)正方形面積和的最大值和最小值,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對(duì)角線交于點(diǎn)O,連接OC,已知AC=5,OC=6
2
,求另一直角邊BC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案