精英家教網 > 初中數學 > 題目詳情

點D是等邊三角形ABC內的一點,將△BDC繞點C順時針旋轉60°,試畫出旋轉后的三角形,并指出圖中的全等圖形以及它們的對應頂點、對應邊和對應角.

答案:略
解析:

略.


練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

我們知道:如果兩個三角形不僅是相似三角形,而且每對對應點所在的直線都經過同一個點,那么這兩個三角形叫做位似三角形,它們的相似比又稱為位似比,這個點叫做位似中心.利用三角形的位似可以將一個三角形縮小或放大.
(1)選擇:如圖1,點O是等邊三角形PQR的中心,P′、Q′、R′分別是OP、OQ、OR的中點,則△P′Q′R′與△PQR是位似三角形.此時,△P′Q′R′與△PQR的位似比、位似中心分別為
 
;
(A)2、點P,(B)
1
2
、點P,( C)2、點O,(D)
1
2
、點O;
(2)如圖2,用下面的方法可以畫△AOB的內接等邊三角形.閱讀后證明相應問題精英家教網
畫法:
①在△AOB內畫等邊三角形CDE,使點C在OA上,點D在OB上;
②連接OE并延長,交AB于點E′,過點E′作E′C′∥EC,交OA于點C′,作E′D′∥ED,交OB于點D′;
③連接C′D′,則△C′D′E′是△AOB的內接三角形.
求證:△C′D′E′是等邊三角形.

查看答案和解析>>

科目:初中數學 來源: 題型:

15、如圖所示,已知點D是等邊三角形ABC的邊BC延長線上的一點,∠EBC=∠DAC,CE∥AB.求證:△CDE是等邊三角形.

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

(2012•海淀區(qū)二模)閱讀下面材料:
小明遇到這樣一個問題:
我們定義:如果一個圖形繞著某定點旋轉一定的角度α (0°<α<360°) 后所得的圖形與原圖形重合,則稱此圖形是旋轉對稱圖形.如等邊三角形就是一個旋轉角為120°的旋轉對稱圖形.如圖1,點O是等邊三角形△ABC的中心,D、E、F分別為AB、BC、CA的中點,請你將△ABC分割并拼補成一個與△ABC面積相等的新的旋轉對稱圖形.

小明利用旋轉解決了這個問題,圖2中陰影部分所示的圖形即是與△ABC面積相等的新的旋轉對稱圖形.
請你參考小明同學解決問題的方法,利用圖形變換解決下列問題:
如圖3,在等邊△ABC中,E1、E2、E3分別為AB、BC、CA 的中點,P1、P2,M1、M2,N1、N2分別為AB、BC、CA的三等分點.
(1)在圖3中畫出一個和△ABC面積相等的新的旋轉對稱圖形,并用陰影表示(保留畫圖痕跡);
(2)若△ABC的面積為a,則圖3中△FGH的面積為
a
7
a
7

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

(2013•宜興市二模)閱讀下面材料:
小明同學遇到這樣一個問題:定義:如果一個圖形繞著某定點旋轉一定的角度α (0°<α<360°) 后所得的圖形與原圖形重合,則稱此圖形是旋轉對稱圖形.如等邊三角形就是一個旋轉角為120°的旋轉對稱圖形.如圖1,點O是等邊三角形△ABC的中心,D、E、F分別為AB、BC、CA的中點,請你將△ABC分割并拼補成一個與△ABC面積相等的新的旋轉對稱圖形.小明利用旋轉解決了這個問題(如圖2所示).圖2中陰影部分所示的圖形即是與△ABC面積相等的新的旋轉對稱圖形.請你參考小明同學解決問題的方法,利用圖形變換解決下列問題:
如圖3,在等邊△ABC中,E1、E2、E3分別為AB、BC、CA 的中點,P 1、P2,M1、M2,N1、N2分別為AB、BC、CA的三等分點.
(1)在圖3中畫-個和△ABC面積相等的新的旋轉對稱圖形,并用陰影表示(保留畫圖痕跡);
(2)若△ABC的邊長為6,則圖3中△ABM1的面積為
3
3
3
3

(3)若△ABC的面積為a,則圖3中△FGH的面積為
a
7
a
7

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知點O是等邊三角形ABC的∠BAC、∠ACB的平分線的交點,以O為頂點作∠DOE=120°,其兩邊分別交AB、BC于D、E,則四邊形DBEO的面積與三角形ABC的面積之比是
1:3
1:3

查看答案和解析>>

同步練習冊答案