【題目】已知:點(diǎn)D是△ABC中AC的中點(diǎn),AE∥BC,ED交AB于點(diǎn)G,交BC的延長(zhǎng)線于點(diǎn)F.
(1)求證:△GAE∽△GBF;
(2)求證:AE=CF;
(3)若BG:GA=3:1,BC=8,求AE的長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】山西是我國(guó)釀酒最早的地區(qū)之一,山西釀酒業(yè)迄今為止已有余年的歷史.在漫長(zhǎng)的歷史進(jìn)程中,山西人民釀造出品種繁多、馳名中外的美酒佳釀,其中以汾酒、竹葉青酒最為有名.某煙酒超市賣有竹葉青酒,每瓶成本價(jià)是元,經(jīng)調(diào)查發(fā)現(xiàn),當(dāng)售價(jià)為元時(shí),每天可以售出瓶,售價(jià)每降低元,可多售出瓶(售價(jià)不高于元)
(1)售價(jià)為多少時(shí)可以使每天的利潤(rùn)最大?最大利潤(rùn)是多少?
(2)要使每天的利潤(rùn)不低于元,每瓶竹葉青酒的售價(jià)應(yīng)該控制在什么范圍內(nèi)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀以下材料,并按要求完成相應(yīng)的任務(wù).
“圓材埋壁”是我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中的一個(gè)問題:今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長(zhǎng)一尺,問徑幾何?用現(xiàn)在的數(shù)學(xué)語言表達(dá)是:如圖,為的直徑,弦,垂足為,寸,尺,其中1尺寸,求出直徑的長(zhǎng).
解題過程如下:
連接,設(shè)寸,則寸.
∵尺,∴寸.
在中,,即,解得,
∴寸.
任務(wù):
(1)上述解題過程運(yùn)用了 定理和 定理.
(2)若原題改為已知寸,尺,請(qǐng)根據(jù)上述解題思路,求直徑的長(zhǎng).
(3)若繼續(xù)往下鋸,當(dāng)鋸到時(shí),弦所對(duì)圓周角的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的內(nèi)切圓⊙O與BC、CA、AB分別相切于點(diǎn)D、E、F,且AB=13,BC=15,CA=14,則tan∠EDF的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=ax2-3ax-2交x軸于A、B(A左B右)兩點(diǎn),交y軸于點(diǎn)C,過C作CD∥x軸,交拋物線于點(diǎn)D,E(-2,3)在拋物線上.
(1)求拋物線的解析式;
(2)P為第一象限拋物線上一點(diǎn),過點(diǎn)P作PF⊥CD,垂足為F,連接PE交y軸于G,求證:FG∥DE;
(3)如圖2,在(2)的條件下,過點(diǎn)F作FM⊥PE于M.若∠OFM=45°,求P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠加工一批零件,為了提高工人工作積極性,工廠規(guī)定每名工人每次薪金如下:生產(chǎn)的零件不超過a件,則每件3元,超過a件,超過部分每件b元,如圖是一名工人一天獲得薪金y(元)與其生產(chǎn)的件數(shù)x(件)之間的函數(shù)關(guān)系式,則下列結(jié)論錯(cuò)誤的是( 。
A.a=20
B.b=4
C.若工人甲一天獲得薪金180元,則他共生產(chǎn)50件
D.若工人乙一天生產(chǎn)m(件),則他獲得薪金4m元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,O是邊AC上的點(diǎn),以OC為半徑的圓分別交邊BC、AC于點(diǎn)D、E,過點(diǎn)D作DF⊥AB于點(diǎn)F.
(1)求證:直線DF是⊙O的切線;
(2)若OC=1,∠A=45°,求劣弧DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,連接AC,BD交于點(diǎn)M.填空:
①的值為 ;
②∠AMB的度數(shù)為 .
(2)類比探究
如圖2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,連接AC交BD的延長(zhǎng)線于點(diǎn)M.請(qǐng)判斷的值及∠AMB的度數(shù),并說明理由;
(3)拓展延伸
在(2)的條件下,將△OCD繞點(diǎn)O在平面內(nèi)旋轉(zhuǎn),AC,BD所在直線交于點(diǎn)M,若OD=1,OB=,請(qǐng)直接寫出當(dāng)點(diǎn)C與點(diǎn)M重合時(shí)AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,下列網(wǎng)格由小正方形組成,點(diǎn)都在正方形網(wǎng)格的格點(diǎn)上.
(1)在圖1中畫出一個(gè)以線段為邊,且與面積相等但不全等的格點(diǎn)三角形;
(2)在圖2和圖3中分別畫出一個(gè)以線段為邊,且與相似(但不全等)的格點(diǎn)三角形,并寫出所畫三角形與的相似比.(相同的相似比算一種)
(1)
(2)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com