【題目】如圖,拋物線y=﹣x2+bx+cx軸交于A、B兩點(diǎn),直線yx+經(jīng)過點(diǎn)A,與拋物線的另一個交點(diǎn)為點(diǎn)C(3,m),線段PQ在線段AB上移動,PQ1,分別過點(diǎn)PQx軸的垂線,交拋物線于E、F,交直線于DG

(1)求拋物線的解析式;

(2)設(shè)四邊形DEFG的面積為S,求S的最大值;

(3)在線段PQ的移動過程中,以DE,F,G為頂點(diǎn)的四邊形是平行四邊形時,求點(diǎn)P的坐標(biāo).

【答案】(1)y=﹣x2+x+2(2)當(dāng)m時,S的最大值為:;(3)點(diǎn)P(1,0)

【解析】

1)直線經(jīng)過點(diǎn)A、C,則點(diǎn)A-1,0)、(3,2),將點(diǎn)A、C的坐標(biāo)代入拋物線表達(dá)式,即可求解;

2)由 ,即可求解;

3)線段PQ在線段AB上移動,出現(xiàn)平行四邊形時,只能是在AC之上,即:DE=FG,即可求解.

解:(1)直線yx+經(jīng)過點(diǎn)A、C,則點(diǎn)A(1,0)(3,2),

將點(diǎn)A、C的坐標(biāo)代入拋物線表達(dá)式得:

解得: ,

故拋物線的表達(dá)式為:y=﹣x2+x+2

(2)設(shè)點(diǎn)P(m,0),則點(diǎn)Q(m+1,0),D(m,m+),點(diǎn)G(m+1m+1),點(diǎn)E(m,﹣m2+m+2)、點(diǎn)F(m+1,﹣m2+m+3),

S (DE+FG)×PQ

S有最大值,當(dāng)m時,S的最大值為:;

(3)線段PQ在線段AB上移動,出現(xiàn)平行四邊形時,只能是在AC之上,

即:DEFG,由(2)得:

解得:m1,

即點(diǎn)P(1,0)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】初中生對待學(xué)習(xí)的態(tài)度一直是教育工作者關(guān)注的問題之一.為此某市教育局對該市部分學(xué)校的八年級學(xué)生對待學(xué)習(xí)的態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個層級,A級:對學(xué)習(xí)很感興趣;B級:對學(xué)習(xí)較感興趣;C級:對學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:

1)此次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;

2)將圖①補(bǔ)充完整;

3)求出圖②中C級所占的圓心角的度數(shù);

4)根據(jù)抽樣調(diào)查結(jié)果,請你估計該市近20000名初中生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達(dá)標(biāo)(達(dá)標(biāo)包括A級和B級)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是“用三角板畫圓的切線”的畫圖過程

如圖1,已知圓上一點(diǎn)A,畫過A點(diǎn)的圓的切線.

畫法:(1)如圖2,將三角板的直角頂點(diǎn)放在圓上任一點(diǎn)C(與點(diǎn)A不重合)處,使其一直角邊經(jīng)過點(diǎn)A,另一條直角邊與圓交于B點(diǎn),連接AB;

(2)如圖3,將三角板的直角頂點(diǎn)與點(diǎn)A重合,使一條直角邊經(jīng)過點(diǎn)B,畫出另一條直角邊所在的直線AD.

所以直線AD就是過點(diǎn)A的圓的切線.

請回答:該畫圖的依據(jù)是_______________________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,直線y= x+4 x軸相交于點(diǎn)A,與直線y= x相交于點(diǎn)P

1)求點(diǎn)P的坐標(biāo);

2)動點(diǎn)E從原點(diǎn)O出發(fā),沿著O→P→A的路線向點(diǎn)A勻速運(yùn)動(E不與點(diǎn)O、A重合),過點(diǎn)E分別作EFx軸于F,EBy軸于B.設(shè)運(yùn)動t秒時, F的坐標(biāo)為(a,0),矩形EBOF與△OPA重疊部分的面積為S.直接寫出: Sa之間的函數(shù)關(guān)系式

3)若點(diǎn)M在直線OP上,在平面內(nèi)是否存在一點(diǎn)Q,使以A,P,M,Q為頂點(diǎn)的四邊形為矩形且滿足矩形兩邊AP:PM之比為1: 若存在直接寫出Q點(diǎn)坐標(biāo)。若不存在請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線ABykx1分別交x軸、y軸于點(diǎn)AB,直線CDyx+2分別交x軸、y軸于點(diǎn)D、C,且直線AB、CD交于點(diǎn)EE的橫坐標(biāo)為﹣6

(1)如圖①,求直線AB的解析式;

(2)如圖②,點(diǎn)P為直線BA第一象限上一點(diǎn),過Py軸的平行線交直線CDG,交x軸于F,在線段PG取點(diǎn)N,在線段AF上取點(diǎn)Q,使GNQF,在DG上取點(diǎn)M,連接MN、QN,若∠GMN=∠QNF,求的值;

(3)(2)的條件下,點(diǎn)E關(guān)于x軸對稱點(diǎn)為T,連接MP、TQ,若MPTQ,且GNNP43,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解某校學(xué)生對以下四個電視節(jié)目:最強(qiáng)大腦、中國詩詞大會、朗讀者出彩中國人的喜愛情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,要求每名學(xué)生選出并且只能選出一個自己最喜愛的節(jié)目,根據(jù)調(diào)查結(jié)果,繪制了如下兩幅不完整的統(tǒng)計圖.

請你根據(jù)圖中所提供的信息,完成下列問題:

本次調(diào)查的學(xué)生人數(shù)為______

在扇形統(tǒng)計圖中,A部分所占圓心角的度數(shù)為______;

請將條形統(tǒng)計圖補(bǔ)充完整;

若該校共有3000名學(xué)生,估計該校最喜愛中國詩詞大會的學(xué)生有多少名.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】201913日,嫦娥四號探測器自主著落在月球背面,實(shí)現(xiàn)人類探測器首次月背軟著陸.當(dāng)時,中國已提前發(fā)射的“鵲橋”中繼星正在地球、月球延長線上的L2點(diǎn)(第二拉格朗日點(diǎn))附近,沿L2點(diǎn)的動態(tài)平衡軌道飛行,為嫦娥四號著陸器和月球車提供地球、月球中繼通信支持,保障嫦娥四號任務(wù)的完成與實(shí)施.如圖,已知月球到地球的平均距離約為38萬公里,L2點(diǎn)到月球的平均距離約為6.5萬公里.某刻,測得線段CL2AL2垂直,∠CBL256°,則下列計算鵲橋中繼星到地球的距離AC方法正確的是( )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,,點(diǎn)上的動點(diǎn),且.

(1)的長度;

(2)在點(diǎn)D運(yùn)動的過程中,弦AD的延長線交BC的延長線于點(diǎn)E,問ADAE的值是否變化?若不變,請求出ADAE的值;若變化,請說明理由.

(3)在點(diǎn)D的運(yùn)動過程中,過A點(diǎn)作AH⊥BD,求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,矩形OABC的頂點(diǎn)Ax軸上,頂點(diǎn)Cy軸上,DBC的中點(diǎn),過點(diǎn)D的反比例函數(shù)圖象交ABE點(diǎn),連接DE.若OD5,tanCOD

(1)求過點(diǎn)D的反比例函數(shù)的解析式;

(2)求△DBE的面積;

(3)x軸上是否存在點(diǎn)P使△OPD為直角三角形?若存在,請直接寫出P點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案