【題目】如圖所示,∠E=∠F=90°,∠B=∠C,AE=AF.有以下結(jié)論:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正確的有( ).
A. 1個 B. 2個 C. 3個 D. 4個
【答案】C
【解析】試題分析:根據(jù)已知的條件,可由AAS判定△AEB≌△AFC,進而可根據(jù)全等三角形得出的結(jié)論來判斷各選項是否正確.
∵∠E=∠F=90°,∠B=∠C,AE=AF,
∴△AEB≌△AFC;(AAS)
∴∠FAM=∠EAN,
∴∠EAN-∠MAN=∠FAM-∠MAN,即∠EAM=∠FAN;(故③正確)
又∵∠E=∠F=90°,AE=AF,
∴△EAM≌△FAN;(ASA)
∴EM=FN;(故①正確)
由△AEB≌△AFC知:∠B=∠C,AC=AB;
又∵∠CAB=∠BAC,
∴△ACN≌△ABM;(故④正確)
由于條件不足,無法證得②CD=DN;故正確的結(jié)論有:①③④;
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB⊥BC,AD∥BC,∠BCD=120°,BC=2,AD=DC.P為四邊形ABCD邊上的任意一點,當∠BPC=30°時,CP的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合題
(1)如圖1,△ABC中, ,AB的垂直平分線交AC于點D,連接BD.若AC=2,BC=1,則△BCD的周長為;
(2)O為正方形ABCD的中心,E為CD邊上一點,F(xiàn)為AD邊上一點,且△EDF的周長等于AD的長.
①在圖2中求作△EDF(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡);
②在圖3中補全圖形,求 的度數(shù);
③若 ,則 的值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC為銳角,點D為直線BC上一動點,以AD為直角邊且在AD的右側(cè)作等腰直角三角形ADE,∠DAE=90°,AD=AE.
(1)如果AB=AC,∠BAC=90°.①當點D在線段BC上時,如圖1,線段CE、BD的位置關(guān)系為___________,數(shù)量關(guān)系為___________
②當點D在線段BC的延長線上時,如圖2,①中的結(jié)論是否仍然成立,請說明理由.
(2)如圖3,如果AB≠AC,∠BAC≠90°,點D在線段BC上運動。探究:當∠ACB多少度時,CE⊥BC?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙上的每個小方格都是邊長為1的正方形,我們把以格點間連線為邊的三角形稱為“格點三角形”,圖中的△ABC就是格點三角形.在建立平面直角坐標系后,點B的坐標為(﹣2,﹣1).
(1)把△ABC向左平移4格后得到△A1B1C1,畫出△A1B 1C1并寫出點A1的坐標;
(2)把△ABC繞點C按順時針旋轉(zhuǎn)90°后得到△A2B2C,畫出△A2B2C的圖形并寫出點A2的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,DA⊥AB,EA⊥AC,AB=AD,AC=AE,BE和CD相交于O,AB和CD相交于P,則∠DOE的度數(shù)是____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點和點在數(shù)軸上對應的數(shù)分別為和,且.
(1)求線段的長;
(2)點在數(shù)軸上所對應的數(shù)為,且是方程的解,點在線段上,并且,請求出點在數(shù)軸上所對應的數(shù);
(3)在(2)的條件下,線段和分別以個單位長度/秒和個單位長度/秒的速度同時向右運動,運動時間為秒,為線段的中點,為線段的中點,若,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,∠DAB的平分線交CD于點E,交BC的延長線于點G,∠ABC的平分線交CD于點F,交AD的延長線于點H,AG與BH交于點O,連接BE,下列結(jié)論錯誤的是( )
A. BO=OH B. DF=CE C. DH=CG D. AB=AE
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com