23、如圖所示,已知E、F為AB、AC上的點(diǎn),且BF⊥AC,CE⊥AB,BD=CD,
求證:點(diǎn)D在∠BAC的角平分線上.
分析:由已知易證△BDE≌△CDF,則DE=DF,根據(jù)角平分線性質(zhì)的逆定理可證點(diǎn)D在∠BAC的角平分線上.
解答:證明:∵BF⊥AC,CE⊥AB,
∴∠BED=∠CFD=90°,
又∵∠BDE=∠CDF,BD=CD,
∴△BDE≌△CDF(AAS),
∴DE=DF,
∴點(diǎn)D在∠BAC的角平分線上(角平分線性質(zhì)的逆定理).
點(diǎn)評:此題主要考查全等三角形的判定和性質(zhì),以及角平分線性質(zhì)的逆定理的應(yīng)用,難度中等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

52、如圖所示,已知AB=AC,EB=EC,AE的延長線交BC于D,那么圖中的全等三角形共有
3
對.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖所示,已知⊙O中,弦AB,CD相交于點(diǎn)P,AP=6,BP=2,CP=4,則PD的長是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知等邊△ABC的兩個(gè)頂點(diǎn)的坐標(biāo)為A(-4,0),B(2,0).
試求:
(1)C點(diǎn)的坐標(biāo);
(2)△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖所示,已知EA⊥AB于點(diǎn)A,CD⊥DF于點(diǎn)D,AB∥CD,請判斷EA與DF的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知等邊△ABC的邊長為a,P是△ABC內(nèi)一點(diǎn),PD∥AB,PE∥BC,PF∥AC,點(diǎn)D、E、F分別在BC、AC、AB上,猜想:PD+PE+PF=
a
a
,并證明你的猜想.

查看答案和解析>>

同步練習(xí)冊答案