【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB

∴∠COE=CAD,EOD=ODA,

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點(diǎn)M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點(diǎn),試求t的取值范圍.

【答案】(1)b=﹣2a,頂點(diǎn)D的坐標(biāo)為(﹣,﹣);(2);(3) 2≤t<

【解析】試題分析:(1)把M點(diǎn)坐標(biāo)代入拋物線解析式可得到ba的關(guān)系,可用a表示出拋物線解析式,化為頂點(diǎn)式可求得其頂點(diǎn)D的坐標(biāo);
(2)把點(diǎn)代入直線解析式可先求得m的值,聯(lián)立直線與拋物線解析式,消去y,可得到關(guān)于x的一元二次方程,可求得另一交點(diǎn)N的坐標(biāo),根據(jù)a<b,判斷a<0,確定D、M、N的位置,畫圖1,根據(jù)面積和可得的面積即可;
(3)先根據(jù)a的值確定拋物線的解析式,畫出圖2,先聯(lián)立方程組可求得當(dāng)GH與拋物線只有一個公共點(diǎn)時,t的值,再確定當(dāng)線段一個端點(diǎn)在拋物線上時,t的值,可得:線段GH與拋物線有兩個不同的公共點(diǎn)時t的取值范圍.

試題解析:(1)∵拋物線有一個公共點(diǎn)M(1,0),

a+a+b=0,即b=2a,

∴拋物線頂點(diǎn)D的坐標(biāo)為

(2)∵直線y=2x+m經(jīng)過點(diǎn)M(1,0),

0=2×1+m,解得m=2,

y=2x2,

(x1)(ax+2a2)=0,

解得x=1

N點(diǎn)坐標(biāo)為

a<b,即a<2a,

a<0,

如圖1,設(shè)拋物線對稱軸交直線于點(diǎn)E

∵拋物線對稱軸為

設(shè)△DMN的面積為S,

(3)當(dāng)a=1時,

拋物線的解析式為:

解得:

G(1,2),

∵點(diǎn)G、H關(guān)于原點(diǎn)對稱,

H(1,2),

設(shè)直線GH平移后的解析式為:y=2x+t,

x2x+2=2x+t,

x2x2+t=0,

=14(t2)=0,

當(dāng)點(diǎn)H平移后落在拋物線上時,坐標(biāo)為(1,0),

(1,0)代入y=2x+t,

t=2,

∴當(dāng)線段GH與拋物線有兩個不同的公共點(diǎn),t的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表是佳佳往小姨家打長途電話的幾次收費(fèi)標(biāo)準(zhǔn)記錄:

回答下列問題:

時間(分)

1

2

3

4

5

6

7

電話費(fèi)(元)

0.6

1.2

1.8

2.4

3.0

3.6

4.2

1)上表反映了變量 之間的關(guān)系, 自變量是 ,因變量是 .

2)幫助佳佳預(yù)測一下,如果她打電話用的時間是10分鐘,需要付 元電話費(fèi);

3)請你寫出通話時間(分鐘)(為正整數(shù))與所要付的電話費(fèi)(元)之間的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l1l2,l3l4l1l2分別交于點(diǎn)A、B、C、D,點(diǎn)P在直線l3l4上且不與點(diǎn)AB、CD重合.記∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.

(1)若點(diǎn)P在圖(1)位置時,求證:∠3=∠1+∠2;

(2)著點(diǎn)P在圖(2)位置時,請寫出∠1、∠2、∠3之間的關(guān)系,并說明理由;

(3)若點(diǎn)P在圖(3)位置時,寫出∠1、∠2、∠3之間的關(guān)系

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B兩輛汽車同時從相距330千米的甲、乙兩地相向而行,s(千米)表示汽車與甲地的距離,t(分)表示汽車行駛的時間,如圖,L1,L2分別表示兩輛汽車的st的關(guān)系.

(1)L1表示哪輛汽車到甲地的距離與行駛時間的關(guān)系?

(2)汽車B的速度是多少?

(3)求L1,L2分別表示的兩輛汽車的st的關(guān)系式.

(4)2小時后,兩車相距多少千米?

(5)行駛多長時間后,A、B兩車相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)、分別是等邊各邊上的點(diǎn),且

)求證:是等邊三角形.

)若,求等邊的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),AB4,AC⊥AB,BD⊥AB,ACBD3.點(diǎn) P 在線段 AB 上以 1的速度由點(diǎn) A 向點(diǎn) B 運(yùn)動,同時,點(diǎn) Q 在線段 BD 上由點(diǎn) B 向點(diǎn) D 運(yùn)動.它們運(yùn)動的時間為 s).

1)若點(diǎn) Q 的運(yùn)動速度與點(diǎn) P 的運(yùn)動速度相等,當(dāng)1 時,△ACP △BPQ 是否全等,請說明理由, 并判斷此時線段 PC 和線段 PQ 的位置關(guān)系;

2)如圖(2),將圖(1)中的“AC⊥AB,BD⊥AB”為改“∠CAB∠DBA60°”,其他條件不變設(shè)點(diǎn) Q 的運(yùn)動速度為,是否存在實(shí)數(shù),使得△ACP △BPQ 全等?若存在,求出相應(yīng)的的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三人站成一橫排照相,因甲、乙兩人是好友,照相時兩人緊鄰著站在一起不分開

1請按左、中、右的順序列出所有符合要求的站位的結(jié)果

2按要求隨機(jī)的站立,求丙站在甲左邊的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是用棋子擺成的“Τ”字圖案.從圖案中可以看出,第1個“Τ”字型圖案需要5枚棋子.第2個“Τ”字型圖案需要8枚棋子.第3個“Τ”字型圖案需要11枚棋子,則第n個“Τ”字型所需棋子的個數(shù)( )

A.2n+3 B.3n+2 C.3n+4 D.3n+5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD是一張邊長為4cm的正方形紙片,E,F分別為AB,CD的中點(diǎn),沿過點(diǎn)D的折痕將A角翻折,使得點(diǎn)A落在EF上的點(diǎn)A′處折痕交AE于點(diǎn)G,則∠ADG=____°EG=___cm

查看答案和解析>>

同步練習(xí)冊答案