【題目】如圖,已知矩形OABC中,OA=3,AB=4,雙曲線y= (k>0)與矩形兩邊AB、BC分別交于D、E,且BD=2AD
(1)求k的值和點E的坐標(biāo);
(2)點P是線段OC上的一個動點,是否存在點P,使∠APE=90°?若存在,求出此時點P的坐標(biāo),若不存在,請說明理由.
【答案】
(1)
解:∵AB=4,BD=2AD,
∴AB=AD+BD=AD+2AD=3AD=4,
∴AD= ,
又∵OA=3,
∴D( ,3),
∵點D在雙曲線y= 上,
∴k= ×3=4;
∵四邊形OABC為矩形,
∴AB=OC=4,
∴點E的橫坐標(biāo)為4.
把x=4代入y= 中,得y=1,
∴E(4,1);
(2)
解:(2)假設(shè)存在要求的點P坐標(biāo)為(m,0),OP=m,CP=4﹣m.
∵∠APE=90°,
∴∠APO+∠EPC=90°,
又∵∠APO+∠OAP=90°,
∴∠EPC=∠OAP,
又∵∠AOP=∠PCE=90°,
∴△AOP∽△PCE,
∴ ,
∴ ,
解得:m=1或m=3,
∴存在要求的點P,坐標(biāo)為(1,0)或(3,0).
【解析】(1)由矩形OABC中,AB=4,BD=2AD,可得3AD=4,即可求得AD的長,然后求得點D的坐標(biāo),即可求得k的值,繼而求得點E的坐標(biāo);(2)首先假設(shè)存在要求的點P坐標(biāo)為(m,0),OP=m,CP=4﹣m,由∠APE=90°,易證得△AOP∽△PCE,然后由相似三角形的對應(yīng)邊成比例,求得m的值,繼而求得此時點P的坐標(biāo).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),是兩個全等的直角三角形(直角邊分別為a,b,斜邊為c).
(1)用這樣的兩個三角形構(gòu)造成如圖(2)的圖形(B,E,C三點在一條直線上),利用這個圖形,求證:a2+b2=c2
(2)當(dāng)a=1,b=2時,將其中一個直角三角形放入平面直角坐標(biāo)系中(如圖(3)),使直角頂點與原點重合,兩直角邊a,b分別與x軸、y軸重合.
請在坐標(biāo)軸上找一點C,使△ABC為等腰三角形.
寫出一個滿足條件的在x軸上的點的坐標(biāo): ;
寫出一個滿足條件的在y軸上的點的坐標(biāo): ,這樣的點有 個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一組對邊平行,另一組對邊相等且不平行的四邊形叫做等腰梯形.
(1)類比研究
我們在學(xué)完平行四邊形后,知道可以從對稱性、邊、角和對角線四個角度對四邊形進(jìn)行研究,完成表.
四邊形 | 對稱性 | 邊 | 角 | 對角線 |
平行 | . | 兩組對邊分別平行,兩組對邊分別相等. | 兩組對角 | 對角線互相平分. |
等腰 | 軸對稱圖形,過平行的一組對邊中點的直線是它的對稱軸. | 一組對邊平行,另一組對邊相等. | . | . |
(2)演繹論證
證明等腰梯形有關(guān)角和對角線的性質(zhì).
已知:在等腰梯形ABCD中,AD∥BC,AB=DC,AC、BD是對角線.
求證:
證明:
揭示關(guān)系
我們可以用圖來揭示三角形和一些特殊三角形之間的關(guān)系.
(3)請用類似的方法揭示四邊形、對角線相等的四邊形、平行四邊形、矩形以及等腰梯形之間的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點E,F(xiàn)分別在邊AB,BC上,AF=DE,AF和DE相交于點G.
(1)觀察圖形,寫出圖中所有與∠AED相等的角.
(2)選擇圖中與∠AED相等的任意一個角,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知邊長為m的正方形面積為12,則下列關(guān)于m的說法中,錯誤的是( ) ①m是無理數(shù);
②m是方程m2﹣12=0的解;
③m滿足不等式組 ;
④m是12的算術(shù)平方根.
A.①②
B.①③
C.③
D.①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點的坐標(biāo)為,作軸,軸,垂足分別為,點為線段的中點,點從點出發(fā),在線段上沿運動,當(dāng)時,點的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2017年5月14日至15日,“一帶一路”國際合作高峰論壇在北京舉行.本屆論壇期間,中國同30多個國家簽署經(jīng)貿(mào)合作協(xié)議.某廠準(zhǔn)備生產(chǎn)甲、乙兩種商品共8萬件銷往“一帶一路”沿線國家和地區(qū).已知2件甲種商品與3件乙種商品的銷售收入相同,3件甲種商品比2件乙種商品的銷售收入多1500元.
(1)甲種商品與乙種商品的銷售單價各多少元?
(2)若甲、乙兩種商品的銷售總收入不低于5400萬元,則至少銷售甲種商品多少萬件?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com