【題目】如圖,在電線桿CD上的C處引拉線CE、CF固定電線桿,拉線CE和地面所成的角∠CED=60°,在離電線桿9mB處安置高為1.5m的測角儀AB,在A處測得電線桿上C處的仰角為30°,求拉線CE的長.(結(jié)果保留根號)

【答案】拉線CE的長約為(6+)米.

【解析】

過點(diǎn)AAHCD,垂足為H,根據(jù)矩形性質(zhì)求出AB,AH,RtACH中,tanCAH=,可求出CH;RtCDE中,∠CED=60°,sinCED=,可求出CE.

解:過點(diǎn)AAHCD,垂足為H

由題意可知四邊形ABDH為矩形,∠CAH=30°,

AB=DH=1.5,BD=AH=9,

RtACH中,tanCAH=,

CH=AHtanCAH,

CH=AHtanCAH=9tan30°=9×(米),

DH=1.5,

CD=3+1.5,

RtCDE中,

∵∠CED=60°,sinCED=,

CE(米),

答:拉線CE的長約為(6+)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角△ABC中,AB2,AC,∠ACB45°,D是平面內(nèi)一點(diǎn)且∠ADB30°,則線段CD的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖所示,的直徑,上一點(diǎn),平分,過

(1)求證:相切;

(2),,求的長;

(3)中點(diǎn),過,若,,求的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一名在校大學(xué)生利用“互聯(lián)網(wǎng)+”自主創(chuàng)業(yè),銷售一種產(chǎn)品,這種產(chǎn)品的成本價(jià)10元/件,已知銷售價(jià)不低于成本價(jià),且物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不高于16元/件,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量(件與銷售價(jià)(元/件)之間的函數(shù)關(guān)系如圖所示.

(1)求之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(2)求每天的銷售利潤W(元與銷售價(jià)(元/件)之間的函數(shù)關(guān)系式,并求出每件銷售價(jià)為多少元時,每天的銷售利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x22(k1)x+ k2+3=0的兩實(shí)數(shù)根為x1x2,設(shè)t=,則t的最大值為(   )

A.2B.2C.4D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一次函數(shù)ykx+b的圖象與反比例函數(shù)y的圖象交于A(1t+1),B(t-5,-1)兩點(diǎn).

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)若點(diǎn)(c,p)(n,q)是反比例函數(shù)y圖象上任意兩點(diǎn),且滿足cn+1時,求的值.

(3)若點(diǎn)M(x1,y1)N(x2y2)在直線AB(不與A、B重合)上,過M、N兩點(diǎn)分別作y軸的平行線交雙曲線于E、F,已知x1-3,0x21,當(dāng)x1x2-3時,判斷四邊形NFEM的形狀.并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中(如圖).已知拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A(﹣1,0)和點(diǎn)B(0,),頂點(diǎn)為C,點(diǎn)D在其對稱軸上且位于點(diǎn)C下方,將線段DC繞點(diǎn)D按順時針方向旋轉(zhuǎn)90°,點(diǎn)C落在拋物線上的點(diǎn)P處.

(1)求這條拋物線的表達(dá)式;

(2)求線段CD的長;

(3)將拋物線平移,使其頂點(diǎn)C移到原點(diǎn)O的位置,這時點(diǎn)P落在點(diǎn)E的位置,如果點(diǎn)My軸上,且以O、D、E、M為頂點(diǎn)的四邊形面積為8,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“校園安全”受到全社會的廣泛關(guān)注,我市某中學(xué)對部分學(xué)生就校園安全知識的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了如圖所示的兩幅尚不完整的統(tǒng)計(jì)圖,請你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:

扇形統(tǒng)計(jì)圖

條形統(tǒng)計(jì)圖

1)接受問卷調(diào)查的學(xué)生共有_______人,扇形統(tǒng)計(jì)圖中“不了解”部分所對應(yīng)扇形的圓心角度數(shù)為_______,并把條形統(tǒng)計(jì)圖補(bǔ)充完整;

2)若該中學(xué)共有學(xué)生人,請根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對校園安全知識達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù)為_______人;

3)若從對校園安全知識達(dá)到“了解”程度的,個女生和,個男生中隨機(jī)抽取人參加校園安全知識競賽,請用畫樹狀圖法或列表法求出恰好抽到個男生和個女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,分別以點(diǎn)A (﹣2,3),B3,4)為圓心,以12為半徑作A、B,MN分別是A、B上的動點(diǎn),Px軸上的動點(diǎn),則PM+PN的最小值等于( 。

A.B.+3C.3D.3

查看答案和解析>>

同步練習(xí)冊答案