【題目】如圖,AB是⊙O的直徑,點(diǎn)P是弦AC上一動(dòng)點(diǎn)(不與A,C重合),過(guò)點(diǎn)P作PE⊥AB,垂足為E,射線EP交 于點(diǎn)F,交過(guò)點(diǎn)C的切線于點(diǎn)D.
(1)求證:DC=DP;
(2)若∠CAB=30°,當(dāng)F是 的中點(diǎn)時(shí),判斷以A,O,C,F(xiàn)為頂點(diǎn)的四邊形是什么特殊四邊形?說(shuō)明理由.
【答案】
(1)
證明:
連接BC、OC,
∵AB是⊙O的直徑,
∴∠OCD=90°,
∴∠OCA+∠OCB=90°,
∵∠OCA=∠OAC,∠B=∠OCB,
∴∠OAC+∠B=90°,
∵CD為切線,
∴∠OCD=90°,
∴∠OCA+∠ACD=90°,
∴∠B=∠ACD,
∵PE⊥AB,
∴∠APE=∠DPC=∠B,
∴∠DPC=∠ACD,
∴AP=DC;
(2)
解:以A,O,C,F(xiàn)為頂點(diǎn)的四邊形是菱形;
∵∠CAB=30°,∴∠B=60°,
∴△OBC為等邊三角形,
∴∠AOC=120°,
連接OF,AF,
∵F是 的中點(diǎn),
∴∠AOF=∠COF=60°,
∴△AOF與△COF均為等邊三角形,
∴AF=AO=OC=CF,
∴四邊形OACF為菱形.
【解析】本題主要考查了切線的性質(zhì)、圓周角定理和等邊三角形的判定等,作出恰當(dāng)?shù)妮o助線利用切線的性質(zhì)是解答此題的關(guān)鍵.(1)連接BC、OC,利用圓周角定理和切線的性質(zhì)可得∠B=∠ACD,由PE⊥AB,易得∠APE=∠DPC=∠B,等量代換可得∠DPC=∠ACD,可證得結(jié)論;(2)由∠CAB=30°易得△OBC為等邊三角形,可得∠AOC=120°,由F是 的中點(diǎn),易得△AOF與△COF均為等邊三角形,可得AF=AO=OC=CF,易得以A,O,C,F(xiàn)為頂點(diǎn)的四邊形是菱形.
【考點(diǎn)精析】掌握垂徑定理和切線的性質(zhì)定理是解答本題的根本,需要知道垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條。磺芯的性質(zhì):1、經(jīng)過(guò)切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過(guò)切點(diǎn)垂直于切線的直線必經(jīng)過(guò)圓心3、圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E,F(xiàn),G,H分別是矩形ABCD各邊的中點(diǎn),AB=6,BC=8,則四邊形EFGH的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C在⊙O上,過(guò)點(diǎn)C的切線與AB的延長(zhǎng)線交于點(diǎn)P,連接AC,若∠A=30°,PC=3,則BP的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)購(gòu)進(jìn)甲、乙兩種商品,乙商品的單價(jià)是甲商品單價(jià)的2倍,購(gòu)買240元甲商品的數(shù)量比購(gòu)買300元乙商品的數(shù)量多15件,求兩種商品單價(jià)各為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一張長(zhǎng)方形紙片ABCD,已知AB=8,AD=7,E為AB上一點(diǎn),AE=5,現(xiàn)要剪下一張等腰三角形紙片(△AEP),使點(diǎn)P落在長(zhǎng)方形ABCD的某一條邊上,則等腰三角形AEP的底邊長(zhǎng)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E、F分別在邊CD、BC上,且DC=3DE=3a.將矩形沿直線EF折疊,使點(diǎn)C恰好落在AD邊上的點(diǎn)P處,則FP= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】東坡商貿(mào)公司購(gòu)進(jìn)某種水果的成本為20元/kg,經(jīng)過(guò)市場(chǎng)調(diào)研發(fā)現(xiàn),這種水果在未來(lái)48天的銷售單價(jià)p(元/kg)與時(shí)間t(天)之間的函數(shù)關(guān)系式為p= 且其日銷售量y(kg)與時(shí)間t(天)的關(guān)系如表:
時(shí)間t(天) | 1 | 3 | 6 | 10 | 20 | 40 | … |
日銷售量y(kg) | 118 | 114 | 108 | 100 | 80 | 40 | … |
(1)已知y與t之間的變化規(guī)律符合一次函數(shù)關(guān)系,試求在第30天的日銷售量是多少?
(2)問(wèn)哪一天的銷售利潤(rùn)最大?最大日銷售利潤(rùn)為多少?
(3)在實(shí)際銷售的前24天中,公司決定每銷售1kg水果就捐贈(zèng)n元利潤(rùn)(n<9)給“精準(zhǔn)扶貧”對(duì)象.現(xiàn)發(fā)現(xiàn):在前24天中,每天扣除捐贈(zèng)后的日銷售利潤(rùn)隨時(shí)間t的增大而增大,求n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)都是單位1,△ABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)將△ABC繞點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn)90°后得△A1B1C1 , 畫出△A1B1C1并直接寫出點(diǎn)C1的坐標(biāo)為;
(2)以原點(diǎn)O為位似中心,在第四象限畫一個(gè)△A2B2C2 , 使它與△ABC位似,并且△A2B2C2與△ABC的相似比為2:1.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com