【題目】為了提高中學(xué)生身體素質(zhì),學(xué)校開設(shè)了A:籃球、B:足球、C:跳繩、D:羽毛球四種體育活動,為了解學(xué)生對這四種體育活動的喜歡情況,在全校隨機抽取若干名學(xué)生進(jìn)行問卷調(diào)查(每個被調(diào)查的對象必須選擇而且只能在四種體育活動中選擇一種),將數(shù)據(jù)進(jìn)行整理并繪制成以下兩幅統(tǒng)計圖(未畫完整).
(1)這次調(diào)查中,一共調(diào)查了名學(xué)生;
(2)請補全兩幅統(tǒng)計圖;
(3)若有3名喜歡跳繩的學(xué)生,1名喜歡足球的學(xué)生組隊外出參加一次聯(lián)誼活動,欲從中選出2人擔(dān)任組長(不分正副),求一人是喜歡跳繩、一人是喜歡足球的學(xué)生的概率.
【答案】
(1)200
(2)解:B占的百分比為:1﹣20%﹣30%﹣15%=35%,
C的人數(shù)為:200×30%=60(名);
如圖:
(3)解:分別用A,B,C表示3名喜歡跳繩的學(xué)生,D表示1名喜歡足球的學(xué)生;
畫樹狀圖得:
∵共有12種等可能的結(jié)果,一人是喜歡跳繩、一人是喜歡足球的學(xué)生的有6種情況,
∴一人是喜歡跳繩、一人是喜歡足球的學(xué)生的概率為: = .
【解析】解:(1)根據(jù)題意得:這次調(diào)查中,一共調(diào)查的學(xué)生數(shù)為:40÷20%=200(名);故答案為:200;
(1)由A的人數(shù)除以A所占的百分比,即可求出調(diào)查的學(xué)生總?cè)藬?shù)。
(2)分別求出B的所占百分比和C的人數(shù),即可補全統(tǒng)計圖。
(3)根據(jù)題意列出樹狀圖,再根據(jù)概率公式即可求解。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料,根據(jù)材料回答:
例如1:(-2)3×33=(-2)×(-2)×(-2)×3×3×3
=[(-2)×3]×[(-2)×3]×[(-2)×3]
=[(-2)×3]3=(-6)3=-216.
例如2:
86×0.1256=8×8×8×8×8×8×0.125×0.125×0.125×0.125×0.125×0.125
=(8×0.125)×(8×0.125)×(8×0.125)×(8×0.125)×(8×0.125)×(8×0.125)
=(8×0.125)6=1.
(1)仿照上面材料的計算方法計算:;
(2)由上面的計算可總結(jié)出一個規(guī)律:(用字母表示)an·bn=_______________;
(3)用(2)的規(guī)律計算:-0.42018××.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的三個頂點坐標(biāo)分別是A(3,3),B(1,1),C(4,-1).
(1)直接寫出點A,B,C關(guān)于x軸對稱的點A1,B1,C1,的坐標(biāo):A1( , ),B1( , ),C1( , ).
(2)在圖中作出△ABC關(guān)于y軸對稱的圖象△A2B2C2.
(3)在y軸上求作一點P,使得PA+PB的值最。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,直線AB與x軸交于點A(﹣2,0),與反比例函數(shù)在第一象限內(nèi)的圖象的交于點B(2,n),連接BO,若S△AOB=4.
(1)求該反比例函數(shù)的解析式和直線AB的解析式;
(2)若直線AB與雙曲線的另一交點為D點,求△ODB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D,E分別是AB,AC的中點,BE=2DE,延長DE到點F,使得EF=BE,連接CF.
(1)求證:四邊形BCFE是菱形;
(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,設(shè)∠BAC=α(0°α90°),現(xiàn)把等長的小棒依次向右擺放在兩射線之間,并使小棒兩端分別落在射線AB,AC上,從點A1開始,其中A1A2為第一根小棒,且A1A2=AA1.
(1)若已經(jīng)擺放了3根小棒,則∠α1= ;∠α2= ;(用含α的式子表示),若A4A3C=92°,求∠BAC的度數(shù).
(2)若只能擺放6根小棒,求α的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D是給定△ABC邊BC所在直線上一動點,E是線段AD上一點,DE=2AE,連接BE,CE,點D從B的左邊開始沿著BC方向運動,則△BCE的面積變換情況是( )
A.逐漸變大
B.逐漸變小
C.先變小后變大
D.始終不變
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC、BD相交于點O,DE∥AC,AE∥BD.
(1)求證:四邊形AODE是矩形;
(2)若△ABC是邊長為2的正三角形,求四邊形AODE的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com